Multi-objective equilibrium optimization model and improved NSGA-Ⅲ algorithm of railway construction
-
摘要: 分析了铁路基础设施建设施工方案的特点、优化模型与优化算法,绘制双代号网络图,以工序所需时间为自变量计算了总工期,提出一种考虑资金时间价值的施工成本计算方法;引入系统可靠性理论对施工质量进行量化评估,探讨施工质量安全水平与时间、成本之间相互关系,计算了施工质量安全水平,提出铁路基础设施施工质量-安全-工期-成本多目标均衡优化模型;引入随机整数基因编码方式与惩罚函数法改进NSGA-Ⅲ算法,以求得模型的帕累托解集,对比了改进NSGA-Ⅲ算法与NSGA-Ⅱ算法的求解性能,并利用轨道工程施工案例对模型进行验证。分析结果表明:设定种群数量为140,迭代次数为900,试验次数为40时,改进NSGA-Ⅲ算法对NSGA-Ⅱ算法的每代平均覆盖率均值比算法NSGA-Ⅱ对改进NSGA-Ⅲ算法的每代平均覆盖率均值提高了将近27倍,改进NSGA-Ⅲ算法的每代平均超体积均值比NSGA-Ⅱ算法的每代平均超体积均值提高了将近54%,表明改进NSGA-Ⅲ算法明显优于传统的NSGA-Ⅱ算法;提出的铁路施工多目标均衡优化模型与改进NSGA-Ⅲ算法能很好地适用于铁路施工管理的多目标均衡优化,在轨道工程施工案例中,当设定种群数量为140,迭代次数为900,每个维度上参考点个数为8时,求解得到140个帕累托解,其中质量水平最大优化0.112 1,安全水平最大优化0.107 3,工期最大优化36 d,成本最大优化将近720万元,可以更好地指导决策者进行施工安排。
-
关键词:
- 铁路基础设施 /
- 施工方案 /
- 多目标均衡优化模型 /
- 改进NSGA-Ⅲ算法 /
- 算法对比
Abstract: The characteristics, optimization models and optimization algorithms of railway infrastructure construction schemes were analysis, the double code-network diagrams were drawn, the time required for the construction process was taken as independent variable, and a method for calculating the construction cost was proposed under considering the time cost of capital. The system reliability theory was introduced to quantitatively assess the construction quality, the interrelationship between the safety level, time and cost of construction quality was explored, the safety level was calculated, and a multi-objective equilibrium optimization model of quality-safety-duration-cost for railway infrastructure construction was put forward. The NSGA-Ⅲ algorithm was improved by introducing the random integer genetic coding method and penalty function method to solve the Pareto solution set of the model, the solution performance of the improved algorithm was compared with the NSGA-Ⅱ algorithm, and the model was verified by using a railway construction case. Analysis results show that when the population number is 140, the iteration number is 900, and the test number is 40, the average coverage rate per generation of the improved NSGA-Ⅲ algorithm to the NSGA-Ⅱ algorithm is nearly 27 times higher than that of the NSGA-Ⅱ algorithm to the improved NSGA-Ⅲ algorithm, and the mean supervolume per generation of the improved NSGA-Ⅲ algorithm is nearly 54% higher than that of the NSGA-Ⅱ algorithm, therefore, the improved NSGA-Ⅲ algorithm is obviously superior to the traditional NSGA-Ⅱ algorithm. The proposed model and improved NSGA-Ⅲ algorithm are well applied to the multi-objective equilibrium optimization of railway construction management. In the construction case of track engineering, when the population number is 140, the iteration number is 900, and the reference point number in each dimension is 8, 140 Pareto solutions are obtained, and the maximum optimizations of quality level, safety level, duration and cost of the engineering are 0.1121, 0.1073, 36 days and nearly 7.2 million yuan, which can better guide the decision makers to arrange the construction. -
表 1 工序数据与参数
Table 1. Data and parameters of procedures
工序编号 工序名称 ts, i/d tn, i/d tmax, i/d Cn, i/万元 φi Qmax, i Rmin, i Rmax, i A 站1至站2左线铺轨 6 8 10 216.8 1.1 0.87 0.05 0.07 B 站1至站2右线铺轨 6 8 10 216.8 1.1 0.87 0.05 0.07 C 站1至站2左线焊接、应力放散与锁定 8 10 12 81.5 1.3 0.89 0.10 0.14 D 站1至站2右线焊接、应力放散与锁定 8 10 12 81.5 1.3 0.89 0.10 0.14 E 站1至站2全线轨道精调 13 15 17 472.7 1.5 0.90 0.08 0.13 F 站2至站3右线铺轨 7 9 11 289.6 1.3 0.90 0.06 0.08 G 站2至站3左线铺轨 7 9 11 289.6 1.3 0.90 0.06 0.08 H 站2至站3右线焊接、应力放散与锁定 10 12 14 108.9 1.6 0.85 0.10 0.13 I 站2至站3左线焊接、应力放散与锁定 10 12 14 108.9 1.6 0.85 0.10 0.13 J 站2至站3全线轨道精调 18 20 22 631.5 1.8 0.83 0.05 0.10 K 站3至站4左线铺轨 8 10 12 302.4 1.5 0.86 0.06 0.09 L 站3至站4右线铺轨 8 10 12 302.4 1.5 0.86 0.06 0.09 M 站3至站4左线焊接、应力放散与锁定 10 12 14 113.7 1.8 0.88 0.10 0.15 N 站3至站4右线焊接、应力放散与锁定 10 12 14 113.7 1.8 0.88 0.10 0.15 O 站3至站4全线轨道精调 19 21 23 659.5 2.0 0.93 0.06 0.12 表 2 试验1结果
Table 2. Result of experiment 1
维度参考点个数 6 8 10 评价指标平均值 58 161.62 58 286.84 57 655.54 表 3 试验2结果
Table 3. Result of experiment 2
种群数量 120 130 140 评价指标平均值 50 087.15 50 132.94 58 286.84 表 4 部分帕累托解集
Table 4. Partial Pareto solution sets
方案编号 工期/d 成本/万元 质量水平 安全水平 1 103 3 616.7 0.918 8 0.946 9 2 119 3 480.5 0.898 7 0.937 3 3 118 3 604.6 0.962 1 0.956 9 4 115 3 617.0 0.960 4 0.957 3 5 99 3 613.7 0.880 0 0.935 7 6 126 3 482.5 0.944 0 0.947 1 7 121 3 540.3 0.960 7 0.956 6 8 113 3 623.3 0.958 4 0.957 0 9 100 3 600.2 0.880 5 0.935 7 10 117 3 483.0 0.905 6 0.938 4 -
[1] 刘晓彤. 铁路建设项目多目标动态优化研究[D]. 成都: 西南交通大学, 2006.LIU Xiao-tong. Research on multi-objective dynamic optimization of railway construction projects[D]. Chengdu: Southwest Jiaotong University, 2006. (in Chinese) [2] LIU Guan-yi, LI Xue-mei, ALAM K M. Multiple objective immune wolf colony algorithm for solving time-cost-quality trade-off problem[J]. PLoS ONE, 2023, 18(2): e0278634. doi: 10.1371/journal.pone.0278634 [3] 王绪民, 王琪. 基于NSGA-Ⅱ与BIM5D的工期-成本优化[J]. 湖北工业大学学报, 2021, 36(2): 81-85.WANG Xu-min, WANG Qi. Time cost optimization based on improved NSGA-Ⅱ algorithm and BIM5D[J]. Journal of Hubei University of Technology, 2021, 36(2): 81-85. (in Chinese) [4] POLLACK-JOHNSON B, LIBERATORE M J. Incorporating quality considerations into project time/cost tradeoff analysis and decision making[J]. IEEE Transactions on Engineering Management, 2006, 53(4): 534-542. doi: 10.1109/TEM.2006.883705 [5] ZHANG Hong, XING Feng. Fuzzy-multi-objective particle swarm optimization for time-cost-quality tradeoff in construction[J]. Automation in Construction, 2010, 19(8): 1067-1075. doi: 10.1016/j.autcon.2010.07.014 [6] WANG Jing-jing, WANG Zong-xi, LIU Hui-min. Multi- objective stochastic time-cost-quality optimization for construction projects based on the reliability theory[J]. KSCE Journal of Civil Engineering, 2023, 27(11): 4545-4556. doi: 10.1007/s12205-023-1083-z [7] 何琴琴, 李希胜, 万寅子. 基于NSGA-Ⅱ的老旧小区改造方案优选[J]. 科学技术与工程, 2022, 22(18): 8030-8036.HE Qin-qin, LI Xi-sheng, WAN Yin-zi. NSGA-Ⅱ-based optimum selection of old residential district reconstruction scheme[J]. Science Technology and Engineering, 2022, 22(18): 8030-8036. (in Chinese) [8] 李汝宁, 冯兴, 姚仰平, 等. 基于改进遗传算法的机场场道施工方案多目标优化[J]. 北京航空航天大学学报, 2022, https://doi.org/10.13700/j.bh.1001-5965.2022.0893.LI Ru-ning, FENG Xing, YAO Yang-ping, et al. Multi objective optimization of airport runway construction scheme based on improved genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, https://doi.org/10.13700/j.bh.1001-5965.2022.0893. (in Chinese) [9] CAPUTO A C, PELAGAGGE P M, PALUMBO M. Economic optimization of industrial safety measures using genetic algorithms[J]. Journal of Loss Prevention in the Process Industries, 2011, 24(5): 541-551. doi: 10.1016/j.jlp.2011.01.001 [10] 杜学美, 赵文林, 雷玮. 基于粒子群算法的项目工期-成本-质量-安全的综合优化[J]. 系统工程, 2019, 37(4): 139-150.DU Xue-mei, ZHAO Wen-lin, LEI Wei. Comprehensive optimization of project duration, cost, quality and safety based on particle swarm optimization[J]. Systems Engineering, 2019, 37(4): 139-150. (in Chinese) [11] 阮宏博. 基于遗传算法的工程多目标优化研究[D]. 大连: 大连理工大学, 2007.RUAN Hong-bo. Research on engineering multi-objective optimization based on genetic algorithm[D]. Dalian: Dalian University of Technology, 2007. (in Chinese) [12] MUNGLE S, BENYOUCEF L, SON Y, et al. A fuzzy clustering-based genetic algorithm approach for time-cost-quality trade-off problems: a case study of highway construction project[J]. Engineering Applications of Artificial Intelligence, 2013, 26(8): 1953-1966. doi: 10.1016/j.engappai.2013.05.006 [13] LIANG Jing, WANG Peng, GUO Li, et al. Multi-objective flow shop scheduling with limited buffers using hybrid self-adaptive differential evolution[J]. Memetic Computing, 2019, 11(4): 407-422. doi: 10.1007/s12293-019-00290-5 [14] 田文, 杨帆, 尹嘉男, 等. 航路时空资源分配的多目标优化方法[J]. 交通运输工程学报, 2020, 20(6): 218-226. doi: 10.19818/j.cnki.1671-1637.2020.06.019 TIAN Wen, YANG Fan, YIN Jia-nan, et al. Multi-objective optimization method of air route space-time resources allocation[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 218-226. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.06.019 [15] 余朝军, 江驹, 徐海燕, 等. 基于改进遗传算法的航班-登机口分配多目标优化[J]. 交通运输工程学报, 2020, 20(2): 121-130. doi: 10.19818/j.cnki.1671-1637.2020.02.010 YU Chao-jun, JIANG Ju, XU Hai-yan et al. Multi-objective optimization of flight-gate assignment based on improved genetic algorithm[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 121-130. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.02.010 [16] DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part Ⅰ: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601. [17] 何斌. 基于精益管理的莞惠城际铁路项目管理研究[D]. 南昌: 南昌大学, 2018.HE Bin. Research on Dongguan-Huizhou intercity railway project management based on lean management[D]. Nanchang: Nanchang University, 2018. (in Chinese) [18] 刘澍, 王军武. 基于膝点驱动进化算法的工程施工多目标优化[J]. 科学技术与工程, 2022, 22(29): 13021-13027.LIU Shu, WANG Jun-wu. Multi-objective optimization of engineering construction based on knee point driven evolutionary algorithm[J]. Science, Technology and Engineering, 2022, 22(29): 13021-13027. (in Chinese) [19] SLOBODNYAK I, SIDOROV A. Time value of money application for the asymmetric distribution of payments and facts of economic life[J]. Journal of Risk and Financial Management, 2022, 15(12): 573. [20] 钟登华, 李正, 吴斌平, 等. 基于Pareto解的面板堆石坝施工工期-质量-成本均衡优化研究[J]. 天津大学学报(自然科学与工程技术版), 2016, 49(10): 1001-1007.ZHONG Deng-hua, LI Zheng, WU Bin-ping. Time-quality-cost tradeoff optimization of rockfill dam construction based on Pareto solution[J]. Journal of Tianjin University (Science and Technology), 2016, 49(10): 1001-1007. (in Chinese) [21] 高兴夫, 胡程顺, 钟登华. 工程项目管理的工期-费用-质量综合优化研究[J]. 系统工程理论与实践, 2007, 27(10): 112-117.GAO Xing-fu, HU Cheng-shun, ZHONG Deng-hua. Study synthesis optimization of time-cost-quality in project management[J]. Systems Engineering Theory and Practice, 2007, 27(10): 112-117. (in Chinese) [22] 李科, 代继飞, 邓诗颖, 等. 高速公路项目多目标多阶段综合优化研究[J]. 项目管理技术, 2021, 19(2): 105-109.LI Ke, DAI Ji-fei, DENG Shi-ying et al. Research on multi-objective and multi-stage comprehensive optimization of expressway project[J]. Project Management Technology, 2021, 19(2): 105-109. (in Chinese) [23] 蒋红妍, 杨森, 曹一鹏. 基于系统可靠性的工程质量量化研究[J]. 西安建筑科技大学学报(自然科学版), 2014, 46(1): 34-37.JIANG Hong-yan, YANG Sen, CAO Yi-peng. Quantitative study on construction quality based on the system reliability[J]. Journal of Xi'an University of Architecture and Technology (Natural Science Edition). 2014, 46(1): 34-37. (in Chinese) [24] TAO Ran, TAM C M. System reliability theory based multiple- objective optimization model for construction projects[J]. Automation in Construction, 2013, 31: 54-64. [25] KUMAR H, YADAV S P. Using reference point-based NSGA-Ⅱ to system reliability[J]. International Journal of Computer Sciences and Engineering, 2017, 5(12): 7-14. [26] TIAN Ye, XIANG Xiao-shu, ZHANG Xing-yi, et al. Sampling reference points on the Pareto fronts of benchmark multi-objective optimization problems[C]//IEEE. 2018 IEEE Congress on Evolutionary Computation. New York: IEEE, 2018: 8477730. [27] 王丽萍, 任宇, 邱启仓, 等. 多目标进化算法性能评价指标研究综述[J]. 计算机学报, 2021, 44(8): 1590-1619.WANG Li-ping, REN Yu, QIU Qi-cang, et al. Survey on performance indicators for multi-objective evolutionary algorithms[J]. Chinese Journal of Computers, 2021, 44(8): 1590-1619. (in Chinese)