留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁路施工多目标均衡优化模型与改进NSGA-Ⅲ算法

张燕 刘佶祯 秦佳良 杨兰 张洪

张燕, 刘佶祯, 秦佳良, 杨兰, 张洪. 铁路施工多目标均衡优化模型与改进NSGA-Ⅲ算法[J]. 交通运输工程学报, 2024, 24(4): 171-183. doi: 10.19818/j.cnki.1671-1637.2024.04.013
引用本文: 张燕, 刘佶祯, 秦佳良, 杨兰, 张洪. 铁路施工多目标均衡优化模型与改进NSGA-Ⅲ算法[J]. 交通运输工程学报, 2024, 24(4): 171-183. doi: 10.19818/j.cnki.1671-1637.2024.04.013
ZHANG Yan, LIU Ji-zhen, QIN Jia-liang, YANG Lan, ZHANG Hong. Multi-objective equilibrium optimization model and improved NSGA-Ⅲ algorithm of railway construction[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 171-183. doi: 10.19818/j.cnki.1671-1637.2024.04.013
Citation: ZHANG Yan, LIU Ji-zhen, QIN Jia-liang, YANG Lan, ZHANG Hong. Multi-objective equilibrium optimization model and improved NSGA-Ⅲ algorithm of railway construction[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 171-183. doi: 10.19818/j.cnki.1671-1637.2024.04.013

铁路施工多目标均衡优化模型与改进NSGA-Ⅲ算法

doi: 10.19818/j.cnki.1671-1637.2024.04.013
基金项目: 

国家重点研发计划 2022YFB2602200

详细信息
    作者简介:

    张燕(1974-),女,贵州遵义人,华东交通大学副教授,从事铁路工程项目优化研究

  • 中图分类号: U29

Multi-objective equilibrium optimization model and improved NSGA-Ⅲ algorithm of railway construction

Funds: 

National Key Research and Development Program of China 2022YFB2602200

More Information
  • 摘要: 分析了铁路基础设施建设施工方案的特点、优化模型与优化算法,绘制双代号网络图,以工序所需时间为自变量计算了总工期,提出一种考虑资金时间价值的施工成本计算方法;引入系统可靠性理论对施工质量进行量化评估,探讨施工质量安全水平与时间、成本之间相互关系,计算了施工质量安全水平,提出铁路基础设施施工质量-安全-工期-成本多目标均衡优化模型;引入随机整数基因编码方式与惩罚函数法改进NSGA-Ⅲ算法,以求得模型的帕累托解集,对比了改进NSGA-Ⅲ算法与NSGA-Ⅱ算法的求解性能,并利用轨道工程施工案例对模型进行验证。分析结果表明:设定种群数量为140,迭代次数为900,试验次数为40时,改进NSGA-Ⅲ算法对NSGA-Ⅱ算法的每代平均覆盖率均值比算法NSGA-Ⅱ对改进NSGA-Ⅲ算法的每代平均覆盖率均值提高了将近27倍,改进NSGA-Ⅲ算法的每代平均超体积均值比NSGA-Ⅱ算法的每代平均超体积均值提高了将近54%,表明改进NSGA-Ⅲ算法明显优于传统的NSGA-Ⅱ算法;提出的铁路施工多目标均衡优化模型与改进NSGA-Ⅲ算法能很好地适用于铁路施工管理的多目标均衡优化,在轨道工程施工案例中,当设定种群数量为140,迭代次数为900,每个维度上参考点个数为8时,求解得到140个帕累托解,其中质量水平最大优化0.112 1,安全水平最大优化0.107 3,工期最大优化36 d,成本最大优化将近720万元,可以更好地指导决策者进行施工安排。

     

  • 图  1  工序直接成本与时间关系

    Figure  1.  Relationship of direct cost and time of procedure

    图  2  工序质量水平与时间关系

    Figure  2.  Relationship of quality level and time of procedure

    图  3  工序安全水平与时间关系

    Figure  3.  Relationship of safety level and time of procedure

    图  4  工序的安全水平与成本关系

    Figure  4.  Relationship of safety level and cost of procedure

    图  5  基因编码结构

    Figure  5.  Genetic coding structure

    图  6  铁路基础设施施工多目标均衡优化模型在NSGA-Ⅲ算法中实现流程

    Figure  6.  Implementation process of multi-objective equilibrium optimization model of railway infrastructure construction in NSGA-Ⅲ algorithm

    图  7  某铁路轨道工程项目双代号网络

    Figure  7.  Double-code network of a railway track engineering project

    图  8  工期-成本二维散点图

    Figure  8.  Duration-cost 2D scatter plot

    图  9  工期-质量二维散点图

    Figure  9.  Duration-quality 2D scatter plot

    图  10  工期-成本-安全三维散点图

    Figure  10.  Duration-cost-safety 3D scatter plot

    图  11  平均覆盖率对比

    Figure  11.  Comparison of average coverages

    图  12  平均超体积对比

    Figure  12.  Comparison of average supervolumes

    表  1  工序数据与参数

    Table  1.   Data and parameters of procedures

    工序编号 工序名称 ts, i/d tn, i/d tmax, i/d Cn, i/万元 φi Qmax, i Rmin, i Rmax, i
    A 站1至站2左线铺轨 6 8 10 216.8 1.1 0.87 0.05 0.07
    B 站1至站2右线铺轨 6 8 10 216.8 1.1 0.87 0.05 0.07
    C 站1至站2左线焊接、应力放散与锁定 8 10 12 81.5 1.3 0.89 0.10 0.14
    D 站1至站2右线焊接、应力放散与锁定 8 10 12 81.5 1.3 0.89 0.10 0.14
    E 站1至站2全线轨道精调 13 15 17 472.7 1.5 0.90 0.08 0.13
    F 站2至站3右线铺轨 7 9 11 289.6 1.3 0.90 0.06 0.08
    G 站2至站3左线铺轨 7 9 11 289.6 1.3 0.90 0.06 0.08
    H 站2至站3右线焊接、应力放散与锁定 10 12 14 108.9 1.6 0.85 0.10 0.13
    I 站2至站3左线焊接、应力放散与锁定 10 12 14 108.9 1.6 0.85 0.10 0.13
    J 站2至站3全线轨道精调 18 20 22 631.5 1.8 0.83 0.05 0.10
    K 站3至站4左线铺轨 8 10 12 302.4 1.5 0.86 0.06 0.09
    L 站3至站4右线铺轨 8 10 12 302.4 1.5 0.86 0.06 0.09
    M 站3至站4左线焊接、应力放散与锁定 10 12 14 113.7 1.8 0.88 0.10 0.15
    N 站3至站4右线焊接、应力放散与锁定 10 12 14 113.7 1.8 0.88 0.10 0.15
    O 站3至站4全线轨道精调 19 21 23 659.5 2.0 0.93 0.06 0.12
    下载: 导出CSV

    表  2  试验1结果

    Table  2.   Result of experiment 1

    维度参考点个数 6 8 10
    评价指标平均值 58 161.62 58 286.84 57 655.54
    下载: 导出CSV

    表  3  试验2结果

    Table  3.   Result of experiment 2

    种群数量 120 130 140
    评价指标平均值 50 087.15 50 132.94 58 286.84
    下载: 导出CSV

    表  4  部分帕累托解集

    Table  4.   Partial Pareto solution sets

    方案编号 工期/d 成本/万元 质量水平 安全水平
    1 103 3 616.7 0.918 8 0.946 9
    2 119 3 480.5 0.898 7 0.937 3
    3 118 3 604.6 0.962 1 0.956 9
    4 115 3 617.0 0.960 4 0.957 3
    5 99 3 613.7 0.880 0 0.935 7
    6 126 3 482.5 0.944 0 0.947 1
    7 121 3 540.3 0.960 7 0.956 6
    8 113 3 623.3 0.958 4 0.957 0
    9 100 3 600.2 0.880 5 0.935 7
    10 117 3 483.0 0.905 6 0.938 4
    下载: 导出CSV
  • [1] 刘晓彤. 铁路建设项目多目标动态优化研究[D]. 成都: 西南交通大学, 2006.

    LIU Xiao-tong. Research on multi-objective dynamic optimization of railway construction projects[D]. Chengdu: Southwest Jiaotong University, 2006. (in Chinese)
    [2] LIU Guan-yi, LI Xue-mei, ALAM K M. Multiple objective immune wolf colony algorithm for solving time-cost-quality trade-off problem[J]. PLoS ONE, 2023, 18(2): e0278634. doi: 10.1371/journal.pone.0278634
    [3] 王绪民, 王琪. 基于NSGA-Ⅱ与BIM5D的工期-成本优化[J]. 湖北工业大学学报, 2021, 36(2): 81-85.

    WANG Xu-min, WANG Qi. Time cost optimization based on improved NSGA-Ⅱ algorithm and BIM5D[J]. Journal of Hubei University of Technology, 2021, 36(2): 81-85. (in Chinese)
    [4] POLLACK-JOHNSON B, LIBERATORE M J. Incorporating quality considerations into project time/cost tradeoff analysis and decision making[J]. IEEE Transactions on Engineering Management, 2006, 53(4): 534-542. doi: 10.1109/TEM.2006.883705
    [5] ZHANG Hong, XING Feng. Fuzzy-multi-objective particle swarm optimization for time-cost-quality tradeoff in construction[J]. Automation in Construction, 2010, 19(8): 1067-1075. doi: 10.1016/j.autcon.2010.07.014
    [6] WANG Jing-jing, WANG Zong-xi, LIU Hui-min. Multi- objective stochastic time-cost-quality optimization for construction projects based on the reliability theory[J]. KSCE Journal of Civil Engineering, 2023, 27(11): 4545-4556. doi: 10.1007/s12205-023-1083-z
    [7] 何琴琴, 李希胜, 万寅子. 基于NSGA-Ⅱ的老旧小区改造方案优选[J]. 科学技术与工程, 2022, 22(18): 8030-8036.

    HE Qin-qin, LI Xi-sheng, WAN Yin-zi. NSGA-Ⅱ-based optimum selection of old residential district reconstruction scheme[J]. Science Technology and Engineering, 2022, 22(18): 8030-8036. (in Chinese)
    [8] 李汝宁, 冯兴, 姚仰平, 等. 基于改进遗传算法的机场场道施工方案多目标优化[J]. 北京航空航天大学学报, 2022, https://doi.org/10.13700/j.bh.1001-5965.2022.0893.

    LI Ru-ning, FENG Xing, YAO Yang-ping, et al. Multi objective optimization of airport runway construction scheme based on improved genetic algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, https://doi.org/10.13700/j.bh.1001-5965.2022.0893. (in Chinese)
    [9] CAPUTO A C, PELAGAGGE P M, PALUMBO M. Economic optimization of industrial safety measures using genetic algorithms[J]. Journal of Loss Prevention in the Process Industries, 2011, 24(5): 541-551. doi: 10.1016/j.jlp.2011.01.001
    [10] 杜学美, 赵文林, 雷玮. 基于粒子群算法的项目工期-成本-质量-安全的综合优化[J]. 系统工程, 2019, 37(4): 139-150.

    DU Xue-mei, ZHAO Wen-lin, LEI Wei. Comprehensive optimization of project duration, cost, quality and safety based on particle swarm optimization[J]. Systems Engineering, 2019, 37(4): 139-150. (in Chinese)
    [11] 阮宏博. 基于遗传算法的工程多目标优化研究[D]. 大连: 大连理工大学, 2007.

    RUAN Hong-bo. Research on engineering multi-objective optimization based on genetic algorithm[D]. Dalian: Dalian University of Technology, 2007. (in Chinese)
    [12] MUNGLE S, BENYOUCEF L, SON Y, et al. A fuzzy clustering-based genetic algorithm approach for time-cost-quality trade-off problems: a case study of highway construction project[J]. Engineering Applications of Artificial Intelligence, 2013, 26(8): 1953-1966. doi: 10.1016/j.engappai.2013.05.006
    [13] LIANG Jing, WANG Peng, GUO Li, et al. Multi-objective flow shop scheduling with limited buffers using hybrid self-adaptive differential evolution[J]. Memetic Computing, 2019, 11(4): 407-422. doi: 10.1007/s12293-019-00290-5
    [14] 田文, 杨帆, 尹嘉男, 等. 航路时空资源分配的多目标优化方法[J]. 交通运输工程学报, 2020, 20(6): 218-226. doi: 10.19818/j.cnki.1671-1637.2020.06.019

    TIAN Wen, YANG Fan, YIN Jia-nan, et al. Multi-objective optimization method of air route space-time resources allocation[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 218-226. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.06.019
    [15] 余朝军, 江驹, 徐海燕, 等. 基于改进遗传算法的航班-登机口分配多目标优化[J]. 交通运输工程学报, 2020, 20(2): 121-130. doi: 10.19818/j.cnki.1671-1637.2020.02.010

    YU Chao-jun, JIANG Ju, XU Hai-yan et al. Multi-objective optimization of flight-gate assignment based on improved genetic algorithm[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 121-130. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.02.010
    [16] DEB K, JAIN H. An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part Ⅰ: solving problems with box constraints[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(4): 577-601.
    [17] 何斌. 基于精益管理的莞惠城际铁路项目管理研究[D]. 南昌: 南昌大学, 2018.

    HE Bin. Research on Dongguan-Huizhou intercity railway project management based on lean management[D]. Nanchang: Nanchang University, 2018. (in Chinese)
    [18] 刘澍, 王军武. 基于膝点驱动进化算法的工程施工多目标优化[J]. 科学技术与工程, 2022, 22(29): 13021-13027.

    LIU Shu, WANG Jun-wu. Multi-objective optimization of engineering construction based on knee point driven evolutionary algorithm[J]. Science, Technology and Engineering, 2022, 22(29): 13021-13027. (in Chinese)
    [19] SLOBODNYAK I, SIDOROV A. Time value of money application for the asymmetric distribution of payments and facts of economic life[J]. Journal of Risk and Financial Management, 2022, 15(12): 573.
    [20] 钟登华, 李正, 吴斌平, 等. 基于Pareto解的面板堆石坝施工工期-质量-成本均衡优化研究[J]. 天津大学学报(自然科学与工程技术版), 2016, 49(10): 1001-1007.

    ZHONG Deng-hua, LI Zheng, WU Bin-ping. Time-quality-cost tradeoff optimization of rockfill dam construction based on Pareto solution[J]. Journal of Tianjin University (Science and Technology), 2016, 49(10): 1001-1007. (in Chinese)
    [21] 高兴夫, 胡程顺, 钟登华. 工程项目管理的工期-费用-质量综合优化研究[J]. 系统工程理论与实践, 2007, 27(10): 112-117.

    GAO Xing-fu, HU Cheng-shun, ZHONG Deng-hua. Study synthesis optimization of time-cost-quality in project management[J]. Systems Engineering Theory and Practice, 2007, 27(10): 112-117. (in Chinese)
    [22] 李科, 代继飞, 邓诗颖, 等. 高速公路项目多目标多阶段综合优化研究[J]. 项目管理技术, 2021, 19(2): 105-109.

    LI Ke, DAI Ji-fei, DENG Shi-ying et al. Research on multi-objective and multi-stage comprehensive optimization of expressway project[J]. Project Management Technology, 2021, 19(2): 105-109. (in Chinese)
    [23] 蒋红妍, 杨森, 曹一鹏. 基于系统可靠性的工程质量量化研究[J]. 西安建筑科技大学学报(自然科学版), 2014, 46(1): 34-37.

    JIANG Hong-yan, YANG Sen, CAO Yi-peng. Quantitative study on construction quality based on the system reliability[J]. Journal of Xi'an University of Architecture and Technology (Natural Science Edition). 2014, 46(1): 34-37. (in Chinese)
    [24] TAO Ran, TAM C M. System reliability theory based multiple- objective optimization model for construction projects[J]. Automation in Construction, 2013, 31: 54-64.
    [25] KUMAR H, YADAV S P. Using reference point-based NSGA-Ⅱ to system reliability[J]. International Journal of Computer Sciences and Engineering, 2017, 5(12): 7-14.
    [26] TIAN Ye, XIANG Xiao-shu, ZHANG Xing-yi, et al. Sampling reference points on the Pareto fronts of benchmark multi-objective optimization problems[C]//IEEE. 2018 IEEE Congress on Evolutionary Computation. New York: IEEE, 2018: 8477730.
    [27] 王丽萍, 任宇, 邱启仓, 等. 多目标进化算法性能评价指标研究综述[J]. 计算机学报, 2021, 44(8): 1590-1619.

    WANG Li-ping, REN Yu, QIU Qi-cang, et al. Survey on performance indicators for multi-objective evolutionary algorithms[J]. Chinese Journal of Computers, 2021, 44(8): 1590-1619. (in Chinese)
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  242
  • HTML全文浏览量:  62
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-15
  • 网络出版日期:  2024-09-26
  • 刊出日期:  2024-08-28

目录

    /

    返回文章
    返回