Importance evaluation of edges in transportation network under dynamic and randomly disruptive event
-
摘要: 采用动态贝叶斯重要度的新方法评估了交通网络连边的重要性;应用随机过程理论刻画外部扰动事件的发生过程,并构建了交通网络可靠性模型;利用概率技术,导出了每条连边的动态贝叶斯重要度的计算公式,并确定了其最大值和取得最大值的相应连边;基于该计算公式,设计了数值算法以评估每条连边在不同时刻的动态贝叶斯重要度的值;引进了一个交通网络的实际案例,其连边受到的动态随机扰动冲击过程是一个给定尺度参数和形状参数的饱和非时齐泊松计数过程,演示了动态贝叶斯重要度的计算方法,并对连边的重要性排序关于尺度参数和形状参数的变化进行了敏感性分析。研究结果表明:无论外部随机扰动事件如何变化,网络的单边割是最重要的连边,进一步证实了理论分析的正确性;本文提出的动态贝叶斯重要度能及时精确地识别所有连边的重要性程度,其同时考虑外部随机扰动事件的扰动和网络结构,弥补了传统静态连边重要度仅考虑连边“位置”的缺陷;尺度参数或者形状参数越大,则2条连边的重要性排序的变化越快。Abstract: A dynamic Bayesian importance measure method was proposed for edge importance evaluation of transpartation network. The random process theory was applied to characterize the generation process of external disruptive events, and a transportation network reliability model was established. Probabilistic techniques were utilized to obtain a formula of dynamic Bayesian importance measure of each network edge, and a maximum value for the importance measure and corresponding maximum edges were determined. Based on the formula, an numerical algorithm was developed to evaluate the Bayesian importance measure of each edge at different times. An actual case of a transportation network was introduced, and the dynamic random disruptive shock process incurred by the edges was a saturated non-time homogeneous Poisson counting process with given scale parameters and shape parameters. The calculation method of dynamic Bayesian importance measure was demonstrated, and the sensitivity analysis of the scale parameter and shape parameter of the importance ranking of the connected edges was made. Research results show that, regardless of the changes in random disruptive events from the external environment, the one-edge cut in the network remains the most important edge, which verifies the correctness of the theoretical analysis. Considering external random disruptive events and the network structure, the Bayesian importance measure can timely and accurately identify the importance of all edges, which fills the gap left by the traditional static measure for edge importance that only considers the position of an edge. As the values of the scale parameters and shape parameters become larger, the importance ranking of the two edges changes faster.
-
表 1 基于动态贝叶斯重要度的连边排序(前7名)
Table 1. Ranking of edges based on dynamic Bayesian importance (top 7)
排序 连边i Mi(0.1) 连边i Mi(10) 连边i Mi(30) 连边i Mi(40) 连边i Mi(100) 1 15 1.000 0 15 1.000 0 15 1.000 0 15 1.000 0 15 1.000 0 2 19 1.000 0 19 1.000 0 19 1.000 0 19 1.000 0 19 1.000 0 3 14 0.942 5 14 0.839 0 14 0.874 4 14 0.887 2 14 0.928 6 4 10 0.942 4 10 0.819 2 10 0.851 8 10 0.864 7 10 0.907 3 5 11 0.941 3 13 0.715 4 13 0.743 3 13 0.761 3 13 0.826 7 6 16 0.941 2 16 0.616 7 17 0.452 7 17 0.408 0 17 0.278 3 7 17 0.938 4 17 0.614 3 16 0.449 7 16 0.402 6 16 0.262 3 -
[1] GERTSBAKH I, SHPUNGIN Y. Network Reliability: A Lecture Course[M]. Berlin: Springer, 2020. [2] ZHOU Yao-ming, WANG Jun-wei, YANG Hai. Resilience of transportation systems: concepts and comprehensive review[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(12): 4262-4276. doi: 10.1109/TITS.2018.2883766 [3] 侯本伟, 李小军, 韩强, 等. 基于Monte Carlo模拟的公路网络震后连通性与通行时间分析[J]. 中国公路学报, 2017, 30(6): 287-296. doi: 10.3969/j.issn.1001-7372.2017.06.012HOU Ben-wei, LI Xiao-jun, HAN Qiang, et al. Post-earthquake connectivity and travel time analysis of highway networks based on Monte Carlo simulation[J]. China Journal of Highway and Transport, 2017, 30(6): 287-296. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.06.012 [4] 张铭航, 韦锦, 范伟莉, 等. 城市轨道交通网络OD间路径旅行时间可靠性研究[J]. 城市交通, 2023, 21(2): 109-117, 72.ZHANG Ming-hang, WEI Jin, FAN Wei-li, et al. Travel time reliability of OD routes in urban rail transit network[J]. Urban Transport of China, 2023, 21(2): 109-117, 72. (in Chinese) [5] 杨景峰, 朱大鹏, 赵瑞琳. 城轨网络站点重要度评估与级联失效抗毁性分析[J]. 中国安全科学学报, 2022, 32(8): 161-167.YANG Jing-feng, ZHU Da-peng, ZHAO Rui-lin. Evaluation of station importance and cascading failure resistance analysis of urban rail transit network[J]. China Safety Science Journal, 2022, 32(8): 161-167. (in Chinese) [6] 马飞, 赵成勇, 孙启鹏, 等. 重大公共卫生灾害主动限流背景下城市轨道交通网络集成韧性[J]. 交通运输工程学报, 2023, 23(1): 208-221. doi: 10.19818/j.cnki.1671-1637.2023.01.016MA Fei, ZHAO Cheng-yong, SUN Qi-peng, et al. Integrated resilience of urban rail transit network with active passenger flow restriction under major public health disasters[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 208-221. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2023.01.016 [7] BAI Jian-ming, LI Ze-hui, KONG Xin-bing. Generalized shock models based on a cluster point process[J]. IEEE Transactions on Reliability, 2006, 55(3): 542-550. doi: 10.1109/TR.2006.879661 [8] CHA J H, FINKELSTEIN M, LEVITIN G. Bivariate preventive maintenance for repairable systems subject to random shocks[J]. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 2017, 231(6): 643-653. doi: 10.1177/1748006X17721797 [9] MALLOR F, OMEY E. Shocks, runs and random sums[J]. Journal of Applied Probability, 2001, 38(2): 438-448. doi: 10.1239/jap/996986754 [10] LIU Zhen-yu, MA Xiao-bing, SHEN Li-juan, et al. Degradation- shock-based reliability models for fault-tolerant systems[J]. Quality and Reliability Engineering International, 2016, 32(3): 949-955. doi: 10.1002/qre.1805 [11] GUT A. Mixed shock models[J]. Bernoulli, 2001, 7(3): 541-555. doi: 10.2307/3318501 [12] WANG Xiao-yue, ZHAO Xian, SUN Jing-lei. A compound negative binomial distribution with mutative termination conditions based on a change point[J]. Journal of Computational and Applied Mathematics, 2019, 351: 237-249. doi: 10.1016/j.cam.2018.11.009 [13] FINKELSTEIN M, GERTSBAKH I. 'Time-free' preventive maintenance of systems with structures described by signatures[J]. Applied Stochastic Models in Business and Industry, 2015, 31(6): 836-845. doi: 10.1002/asmb.2111 [14] KUO W, ZHU X Y. Importance Measures in Reliability, Risk and Optimization[M]. Chichester: John Wiley and Sons, 2012. [15] 汪小帆, 李翔, 陈关荣. 网络科学导论[M]. 北京: 高等教育出版社, 2012.WANG Xiao-fan, LI Xiang, CHEN Guan-rong. Network Science: An Introduction[M]. Beijing: Higher Education Press, 2012. (in Chinese) [16] 杜永军, 惠树鹏, 蔡志强, 等. 基于失效边数概率分布的K-终端网络重要度计算方法[J]. 运筹与管理, 2022, 31(6): 111-116.DU Yong-jun, HUI Shu-peng, CAI Zhi-qiang, et al. Evaluating of importance measures for K-terminal network with the probability distribution of failed edges[J]. Operations Research and Management Science, 2022, 31(6): 111-116. (in Chinese) [17] 袁广, 孔德文, 孙立山, 等. 超网络视角下的城市交通枢纽重要度判别方法研究[J]. 公路交通科技, 2023, 40(1): 192-199.YUAN Guang, KONG De-wen, SUN Li-shan, et al. Study on method for discriminating importance of urban transport hub from perspective of super network[J]. Journal of Highway and Transportation Research and Development, 2023, 40(1): 192-199. (in Chinese) [18] KOPSIDAS A, KEPAPTSOGLOU K. Identification of critical stations in a metro system: a substitute complex network analysis[J]. Physica A: Statistical Mechanics and its Applications, 2022, 596: 127123. doi: 10.1016/j.physa.2022.127123 [19] 谌微微, 张富贵, 赵晓波. 轨道交通线网拓扑结构模型及节点重要度分析[J]. 重庆交通大学学报(自然科学版), 2019, 38(7): 107-113. doi: 10.3969/j.issn.1674-0696.2019.07.18CHEN Wei-wei, ZHANG Fu-gui, ZHAO Xiao-bo. Topological structure model and node importance analysis of rail transit network[J]. Journal of Chongqing Jiaotong University (Natural Science), 2019, 38(7): 107-113. (in Chinese) doi: 10.3969/j.issn.1674-0696.2019.07.18 [20] MENG Yang-yang, TIAN Xiang-liang, LI Zhong-wen, et al. Comparison analysis on complex topological network models of urban rail transit: a case study of Shenzhen Metro in China[J]. Physica A: Statistical Mechanics and its Applications, 2020, 559: 125031. doi: 10.1016/j.physa.2020.125031 [21] WU Xing-tang, DONG Hai-rong, TSE C K, et al. Analysis of metro network performance from a complex network perspective[J]. Physica A: Statistical Mechanics and its Applications, 2018, 492: 553-563. doi: 10.1016/j.physa.2017.08.074 [22] 马超群, 张爽, 陈权, 等. 客流特征视角下的轨道交通网络特征及其脆弱性[J]. 交通运输工程学报, 2020, 20(5): 208-216. doi: 10.19818/j.cnki.1671-1637.2020.05.017MA Chao-qun, ZHANG Shuang, CHEN Quan, et al. Characteristics and vulnerability of rail transit network besed on perspective of passenger flow characteristics[J]. Journal of Traffic and Transportation Engineering, 2020, 20(5): 208-216. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.05.017 [23] 周敏, 王海明, 杨振珑, 等. 基于熵权-TOPSIS的成都市地铁TOD站点评价排序研究[J]. 铁道运输与经济, 2023, 45(4): 150-156.ZHOU Min, WANG Hai-ming, YANG Zhen-long, et al. Evaluation ranking of Chengdu metro TOD stations based on entropy weight-TOPSIS[J]. Railway Transport and Economy, 2023, 45(4): 150-156. (in Chinese) [24] 薛锋, 何传磊, 黄倩. 成都地铁网络的关键节点识别方法及性能分析[J]. 中国安全科学学报, 2019, 29(1): 93-99.XUE Feng, HE Chuan-lei, HUANG Qian. Identification of key nodes in Chengdu metro network and analysis of network performance[J]. China Safety Science Journal, 2019, 29(1): 93-99. (in Chinese) [25] 王亭, 张永, 周明妮, 等. 融合网络拓扑结构特征与客流量的城市轨道交通关键节点识别研究[J]. 交通运输系统工程与信息, 2022, 22(6): 201-211.WANG Ting, ZHANG Yong, ZHOU Ming-ni, et al. Identification of key nodes of urban rail transit integrating network topology characteristics and passenger flow[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(6): 201-211. (in Chinese) [26] 吕彪, 高自强, 刘一骝. 道路交通系统韧性及路段重要度评估[J]. 交通运输系统工程与信息, 2020, 20(2): 114-121.LYU Biao, GAO Zi-qiang, LIU Yi-liu. Evaluation of road transportation system resilience and link importance[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 114-121. (in Chinese) [27] FRENKEL I B, KARAGRIGORIOU A, LISNIANSKI A, et al. Applied Reliability Engineering and Risk Analysis: Probabilistic Models and Statistical Inference[M]. Chichester: John Wiley and Sons, 2014. [28] PEETA S, SIBEL SALMAN F, GUNNEC D, et al. Pre- disaster investment decisions for strengthening a highway network[J]. Computers and Operations Research, 2010, 37(10): 1708-1719. doi: 10.1016/j.cor.2009.12.006 [29] 杜永军, 张攀, 蔡志强. 饱和非时齐泊松失效过程下网络系统连边交互机理分析[J]. 控制与决策, 2024, 39(1): 180-188.DU Yong-jun, ZHANG Pan, CAI Zhi-qiang. Analysis of link interaction regarding network failure subject to a saturated nonhomogeneous Poisson process[J]. Control and Decision, 2024, 39(1): 180-188. (in Chinese) [30] ROSS S M. Introduction to Probability Models[M]. Berlin: Elsevier, 2010. [31] CHANG H W, HWANG F K. Rare-event component importance for the consecutive-k system[J]. Naval Research Logistics, 2002, 49(2): 159-166. doi: 10.1002/nav.10001