留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

道路交通系统无线充电车辆的动态抗偏移典型特征识别

周熙炜 石文帅 王会峰 代亮 武奇生 白叶红

周熙炜, 石文帅, 王会峰, 代亮, 武奇生, 白叶红. 道路交通系统无线充电车辆的动态抗偏移典型特征识别[J]. 交通运输工程学报, 2024, 24(4): 195-207. doi: 10.19818/j.cnki.1671-1637.2024.04.015
引用本文: 周熙炜, 石文帅, 王会峰, 代亮, 武奇生, 白叶红. 道路交通系统无线充电车辆的动态抗偏移典型特征识别[J]. 交通运输工程学报, 2024, 24(4): 195-207. doi: 10.19818/j.cnki.1671-1637.2024.04.015
ZHOU Xi-wei, SHI Wen-shuai, WANG Hui-feng, DAI Liang, WU Qi-sheng, BAI Ye-hong. Typical feature recognition of dynamic anti-migration for wireless charging vehicles in road traffic systems[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 195-207. doi: 10.19818/j.cnki.1671-1637.2024.04.015
Citation: ZHOU Xi-wei, SHI Wen-shuai, WANG Hui-feng, DAI Liang, WU Qi-sheng, BAI Ye-hong. Typical feature recognition of dynamic anti-migration for wireless charging vehicles in road traffic systems[J]. Journal of Traffic and Transportation Engineering, 2024, 24(4): 195-207. doi: 10.19818/j.cnki.1671-1637.2024.04.015

道路交通系统无线充电车辆的动态抗偏移典型特征识别

doi: 10.19818/j.cnki.1671-1637.2024.04.015
基金项目: 

国家重点研发计划 2021YFB2601401

陕西省重点研发计划 2022GY-308

详细信息
    作者简介:

    周熙炜(1975-),男,陕西兴平人,长安大学教授,工学博士,从事交通能源技术、电动汽车技术等研究

    通讯作者:

    王会峰(1976-),男,山西运城人,长安大学教授,工学博士

  • 中图分类号: U495

Typical feature recognition of dynamic anti-migration for wireless charging vehicles in road traffic systems

Funds: 

National Key Research and Development Program of China 2021YFB2601401

Key Research and Development Program of Shaanxi Province 2022GY-308

More Information
  • 摘要: 针对无线充电车辆的动态特征识别和车辆分型问题,设计了基于车-路协同的混合电磁感应单元和地磁场感应单元的复合感应装置;在混合电磁感应单元中,为实现动态条件下的感应识别,提出了以谐振电流有效值为无线充电车辆特征的检测方法,并通过在电路拓扑中引入电场耦合与磁场耦合2种形式,同时加入高阶的双边电容电感补偿结构;为实现半开域耦合程度的量化分析,定义了线圈传输与极板传输的功率比参数,进而实现了偏移情况下的感应识别;以地磁传感器捕获不同车辆通过时的地磁场扰动信号为例,为改善非线性非平稳信号的提取效果,提出了地磁信号的集合经验模态分解(EEMD)法;引入曲线的特征向量提取法,以小型三厢轿车、中型两厢轿车、中型厢式货车和大型客车等4种车型作为典型试验样本,将不同车辆的地磁曲线信号转化为特征向量图谱,以实现车辆形状类型的判断。研究结果表明:混合电磁感应单元在测试条件下,沿线圈偏移方向的识别长度约为220 mm,垂直于线圈向外偏移方向的识别长度约为170 mm,其识别范围比单一的磁场耦合增大约62.8%;地磁场感应单元可实现长度为3.7~12.0 m、速度为2.78~16.67 m·s-1的车辆类型特征检测,通过地磁场感应单元与混合电磁感应单元相互配合,可有效提高无线充电车辆动态分型识别的可靠性,从而促进无线充电技术在道路交通电气化设施中的应用和发展。

     

  • 图  1  复合感应系统的场景

    Figure  1.  Scenario of composite induction system

    图  2  混合电磁感应电路拓扑结构

    Figure  2.  Hybrid electromagnetic induction circuit topology

    图  3  混合电磁感应电路的简化拓扑

    Figure  3.  Simplified topology of hybrid electromagnetic induction circuit

    图  4  功率比与电容比的关系曲线

    Figure  4.  Relationship curves between power ratio and capacitance ratio

    图  5  耦合线圈半开域状态下的3D模型与磁场矢量云图

    Figure  5.  3D model and magnetic field vector cloud image of coupling coil at semi-open domain condition

    图  6  传输效率随径向偏移距离变化的曲线

    Figure  6.  Change curve of transmission efficiency with radial offset distance

    图  7  混合电磁感应的半开域耦合

    Figure  7.  Hybrid electromagnetic induction in a semi-open domain coupling

    图  8  功率比与路侧输出电压的关系曲线

    Figure  8.  Relationship curve between power ratio and roadside output voltage

    图  9  基于EEMD的地磁扰动信号预处理流程

    Figure  9.  Flow of geomagnetic disturbance signal preprocessing based on EEMD

    图  10  获得i(t)的过程框图

    Figure  10.  Process diagram of i(t)

    图  11  基于EEMD的地磁扰动信号预处理

    Figure  11.  Geomagnetic disturbance signal preprocessing based on EEMD

    图  12  双地磁传感器位置布置

    Figure  12.  Position layout of dual geomagnetic sensors

    图  13  双地磁传感器采集某车辆的地磁扰动信息

    Figure  13.  Geomagnetic disturbance information of vehicle collected by dual ground magnetic sensors

    图  14  基于EEMD滤波的4种典型车型地磁扰动曲线

    Figure  14.  Geomagnetic disturbance curves of 4 typical vehicle models based on EEMD filtering

    图  15  地磁扰动曲线的特征向量图谱

    Figure  15.  Feature vector map of geomagnetic curve

    图  16  混合电磁感应单元电路试验

    Figure  16.  Experiment on hybrid electromagnetic unit circuit

    图  17  电容极板间的电场强度分布

    Figure  17.  Distribution of electric field strength between capacitor plates

    图  18  电感线圈间的磁感应强度分布

    Figure  18.  Distribution of magnetic induction intensity between inductor coils

    图  19  车载侧输入电压和路侧输出谐振电流波形

    Figure  19.  Waveforms of onboard input voltage and roadside output resonance current

    图  20  动极板偏移距离与能量感应传输效率的变化曲线

    Figure  20.  Change curves of moving plate offset distance and energy induction transmission efficiency

    图  21  地磁场感应单元测试场景

    Figure  21.  Geomagnetic field induction unit testing scenario

    图  22  不同车辆的地磁扰动曲线及其特征向量对比

    Figure  22.  Comparison of geomagnetic disturbance curves and their characteristic vectors for different vehicles

    表  1  典型测试车辆的外形尺寸

    Table  1.   Dimensions of typical test vehicles mm

    序号 车身型式 外形尺寸:长×宽×高
    1 小型三厢轿车 4 300×1 705×1 460
    2 中型两厢轿车 4 733×1 839×1 673
    3 中型厢式货车 6 995×2 420×3 650
    4 团体客车 10 490×2 500×3 600
    下载: 导出CSV

    表  2  混合电磁感应电路各元件的参数值

    Table  2.   Parameters of hybrid electromagnetic circuit

    结构参数 数值 结构参数 数值
    Cf1/nF 4.26 C2/pF 394.7
    Cf2/nF 5.18 CS/pF 4.5
    Lf1/μH 16.53 M12/μH 58.18
    Lf2/μH 13.6 N1 56
    L1/μH 843.27 N2 12
    L2/μH 178.42 d/mm 150
    C1/pF 83.51 h/mm 180
    下载: 导出CSV
  • [1] AFRIDI K. The future of electric vehicle charging infrastructure[J]. Nature Electronics, 2022, 5(2): 62-64. doi: 10.1038/s41928-022-00726-w
    [2] SIKANDAR M S, DARWISH M, MAROUCHOS C. Review of wireless charging of EV[C]//IEEE. 2022 57th International Universities Power Engineering Conference (UPEC). New York: IEEE, 2022: 1-4.
    [3] PATIL D, MCDONOUGH M K, MILLER J M, et al. Wireless power transfer for vehicular applications: overview and challenges[J]. IEEE Transactions on Transportation Electrification, 2018, 4(1): 3-37. doi: 10.1109/TTE.2017.2780627
    [4] 王建辉. 智能无线充电的技术及其应用[J]. 数字技术与应用, 2020, 38(8): 54-57.

    WANG Jian-hui. Technology and applications of intelligent wireless charging[J]. Digital Technology and Application, 2020, 38(8): 54-57. (in Chinese)
    [5] EL MELIGY A O, ELGHANAM E A, HASSAN M S, et al. Deployment optimization of dynamic wireless chargers for electric vehicles[C]//IEEE. 2022 IEEE Transportation Electrification Conference and Expo (ITEC). New York: IEEE, 2022: 290-294.
    [6] SHANMUGAM Y, NARAYANAMOORTHI R, VISHNURAM P, et al. A systematic review of dynamic wireless charging system for electric transportation[J]. IEEE Access, 2022, 10: 133617-133642. doi: 10.1109/ACCESS.2022.3227217
    [7] 石文帅. 基于地磁传感器的车辆信息检测系统研究[D]. 西安: 长安大学, 2019.

    SHI Wen-shuai. Research on vehicle information detection system based on geomagnetic sensor[D]. Xi'an: Chang'an University, 2019. (in Chinese)
    [8] WAHLSTRÖM N, HOSTETTLER R, GUSTAFSSON F, et al. Classification of driving direction in traffic surveillance using magnetometers[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(4): 1405-1418. doi: 10.1109/TITS.2014.2298199
    [9] LI Hai-jian, DONG Hong-hui, JIA Li-min, et al. Vehicle classification with single multi-functional magnetic sensor and optimal MNS-based CART[J]. Measurement, 2014, 55: 142-152. doi: 10.1016/j.measurement.2014.04.028
    [10] HE H, MAO C Q, PAN H Y, et al. Vehicle detection system based on magnetoresistive sensor[J]. Applied Mechanics and Materials, 2015, 743: 277-280. doi: 10.4028/www.scientific.net/AMM.743.277
    [11] BALID W, TAFISH H, REFAI H H. Intelligent vehicle counting and classification sensor for real-time traffic surveillance[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(6): 1784-1794. doi: 10.1109/TITS.2017.2741507
    [12] 马芳兰, 张红霞, 徐武德, 等. 基于地磁传感器的车辆检测算法研究[J]. 自动化仪表, 2017, 38(11): 84-87.

    MA Fang-lan, ZHANG Hong-xia, XU Wu-de, et al. Research on vehicle detection algorithm based on geomagnetic sensor[J]. Process Automation Instrumentation, 2017, 38(11): 84-87. (in Chinese)
    [13] 张增超, 李强, 孙红雨, 等. 基于地磁传感器和UWB技术的停车位车辆检测方法与实现[J]. 传感技术学报, 2019, 32(12): 1917-1922.

    ZHANG Zeng-chao, LI Qiang, SUN Hong-yu, et al. Parking vehicle detection method and implementation based on geomagnetic sensor and UWB technology[J]. Chinese Journal of Sensors and Actuators, 2019, 32(12): 1917-1922. (in Chinese)
    [14] 林渊博, 姚剑敏, 林伟. 基于地磁传感器的停车位检测算法研究[J]. 电气开关, 2019, 57(4): 42-44. doi: 10.3969/j.issn.1004-289X.2019.04.011

    LIN Yuan-bo, YAO Jian-min, LIN Wei. Research on parking space detection algorithm based on geomagnetic sensor[J]. Electric Switchgear, 2019, 57(4): 42-44. (in Chinese) doi: 10.3969/j.issn.1004-289X.2019.04.011
    [15] 叶青, 刘剑雄, 刘铮, 等. 基于电磁感应的道路车辆车型在线分类方法研究[J]. 湖南大学学报(自然科学版), 2019, 46(12): 41-49.

    YE Qing, LIU Jian-xiong, LIU Zheng, et al. Research on online classification method of road vehicle types based on electromagnetic induction[J]. Journal of Hunan University (Natural Sciences), 2019, 46(12): 41-49. (in Chinese)
    [16] 张献, 王杰, 杨庆新, 等. 电动汽车动态无线供电系统电能耦合机构与切换控制研究[J]. 电工技术学报, 2019, 34(15): 3093-3101.

    ZHANG Xian, WANG Jie, YANG Qing-xin, et al. The power coupling mechanism and switching control for dynamic wireless power supply system of electric vehicle[J]. Transactions of China Electrotechnical Society, 2019, 34(15): 3093-3101. (in Chinese)
    [17] NAGENDRA G R, CHEN L, COVIC G A, et al. Detection of EVs on IPT highways[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2014, 2(3): 584-597. doi: 10.1109/JESTPE.2014.2308307
    [18] AZAD A N, ECHOLS A, KULYUKIN V A, et al. Analysis, optimization, and demonstration of a vehicular detection system intended for dynamic wireless charging applications[J]. IEEE Transactions on Transportation Electrification, 2019, 5(1): 147-161. doi: 10.1109/TTE.2018.2870339
    [19] WANG Ning, YANG Qing-xin, ZHANG Heng-jun. RETRACTED: modeling and analysis of dynamic wireless charging for electric vehicles under different working scenarios[J]. International Journal of Electrical Engineering and Education, 2023, 60(S1): 912-922.
    [20] PATIL D, MILLER J M, FAHIM B, et al. A coil detection system for dynamic wireless charging of electric vehicle[J]. IEEE Transactions on Transportation Electrification, 2019, 5(4): 988-1003. doi: 10.1109/TTE.2019.2905981
    [21] SONAPREETHA M R, JEONG S Y, CHOI S Y, et al. Dual-purpose non-overlapped coil sets as foreign object and vehicle location detections for wireless stationary EV chargers[C]// IEEE. 2015 IEEE PELS Workshop on Emerging Technologies: Wireless Power (2015 WoW). New York: IEEE, 2015: 1-7.
    [22] DENG Q J, LIU J T, CZARKOWSKI D, et al. Edge position detection of on-line charged vehicles with segmental wireless power supply[J]. IEEE Transactions on Vehicular Technology, 2017, 66(5): 3610-3621.
    [23] YUAN Zhao-yang, YANG Qing-xin, ZHANG Xian, et al. High-order compensation topology integration for high-tolerant wireless power transfer[J]. Energies, 2023, 16(2): 638.
    [24] HASAN N, WANG H J, SAHA T, et al. A novel position sensorless power transfer control of lumped coil-based in-motion wireless power transfer systems[C]//IEEE. 2015 IEEE Energy Conversion Congress and Exposition (ECCE). New York: IEEE, 2015: 586-593.
    [25] LU F, ZHANG H, HOFMANN H, et al. An inductive and capacitive combined wireless power transfer system with lc-compensated topology[J]. IEEE Transactions on Power Electronics, 2016, 31(12): 8471-8482. doi: 10.1109/TPEL.2016.2519903
    [26] FENG Yi-meng, MAO Guo-qiang, CHEN Bo, et al. MagMonitor: vehicle speed estimation and vehicle classification through a magnetic sensor[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 1311-1322.
    [27] 徐诗卉, 张欢, 姚辰, 等. 电动汽车无线充电系统的精确定位方法[J]. 仪表技术与传感器, 2020(11): 59-63.

    XU Shi-Hui, ZHANG Huan, YAO Chen, et al. Fine positioning method for wireless charging system of electric vehicles[J]. Instrument Technique and Sensor, 2020(11): 59-63. (in Chinese)
    [28] CHEN Y F, ZHANG H L, SHIN C S, et al. A comparative study of S-S and LCC-S compensation topology of inductive power transfer systems for EV chargers[C]//IEEE. 2019 IEEE 10th International Symposium on Power Electronics for Distributed Generation Systems (PEDG). New York: IEEE, 2019: 99-104.
    [29] 白叶红. AGV车HWPT系统的非线性因素与优化设计[D]. 西安: 长安大学, 2021.

    BAI Ye-hong. The nonlinear factors and optimal design of the HWPT system of AGV[D]. Xi'an: Chang'an University, 2021. (in Chinese)
    [30] 张朱浩伯, 徐德鸿, PHILIP T K, 等. 一种高偏移容限的无线电能传输系统设计[J]. 电源学报, 2021, 19(1): 155-164.

    ZHANG Zhu-hao-bo, XU De-hong, PHILIP T K, et al. Design of a wireless power transfer system with high misalignment tolerance[J]. Journal of Power Supply, 2021, 19(1): 155-164. (in Chinese)
  • 加载中
图(22) / 表(2)
计量
  • 文章访问数:  176
  • HTML全文浏览量:  52
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-03-27
  • 网络出版日期:  2024-09-26
  • 刊出日期:  2024-08-28

目录

    /

    返回文章
    返回