Chloride erosion test and life prediction of HPC-NC gradient column under dry-wet cycles
-
摘要: 为提高海洋潮汐与浪溅区钢筋混凝土结构受氯盐侵蚀的耐久性,提出了一种高性能混凝土(HPC)-普通混凝土(NC)梯度柱新型结构,设计了一种干湿循环试验方法进行氯盐侵蚀试验,研究其在不同试验参数影响下内部氯离子的传输规律;通过理论推导与拟合计算,建立了混凝土内部氯离子分布的简化计算模型,并验证了模型的合理性;基于所建简化模型,对设计的梯度柱进行了钢筋初锈时间的寿命预测。研究结果表明:采用功能梯度结构能有效适应潮汐与浪溅区结构上部受干湿循环作用、下部受长期浸泡作用的侵蚀特点,不同外掺剂组合作用抑制了氯离子的侵蚀,HPC内自由氯离子含量比NC降低了17.7%;表面氯离子含量随时间而增大,并有趋于稳定的趋势,符合指数分布特征;无论是长期浸泡作用还是干湿循环作用下,氯离子扩散系数均随作用时长增加而减小,其减小速率随时间增加而降低,最终趋于稳定;根据建立的氯离子分布简化计算模型得到的氯离子分布曲线,与试验及相关文献的氯离子分布曲线相对误差在12%以内;得到了60~80 mm保护层厚度下有无外掺剂时钢筋初锈的预警时间分别为41~85和26~47年,因此,掺加阻锈剂与侵蚀抑制剂可显著提高HPC-NC梯度柱的寿命。Abstract: In order to improve the durability of steel-reinforced concrete structures subjected to chloride erosion in marine tidal and splash zone, a new structure of high performance concrete(HPC) -normal concrete(NC) gradient column was proposed. A dry-wet cycle test method was designed to conduct the chloride erosion test. The transmission law of internal chloride ions under the influence of different test parameters was studied. A simplified calculation model of chloride ion distribution in concrete was established by theoretical derivation and fitting calculation, and the rationality of the model was verified. The life prediction of initial corrosion time of steel bars was performed for the designed gradient structure based on the simplified model. Research results show that the functional gradient structure can effectively adapt to the erosion characteristics of the upper part in the tidal and splash zone subjected to dry-wet cycles and the lower part subjected to long-term immersion. The combination of different admixtures inhibits the erosion of chloride ions, and the free chloride ion content in HPC is 17.7% lower than that in NC. The surface chloride ion content increases with time and tends to stabilize, which conforms to the exponential distribution. The chloride ion diffusion coefficient decreases with action time under long-term immersion or dry-wet cycles. Its reduction rate decreases with time, and finally tends to stabilize. Compared with the values from the test and related literatures, the relative error of chloride ion distribution curve obtained by the simplified calculation model is within 12%. The early warning times of initial corrosion of steel bars with and without admixture under the protective layer thickness of 60-80 mm are 41-85 and 26-47 years, respectively, proving that the addition of rust inhibitor and erosion inhibitor can significantly improve the service life of HPC-NC gradient column.
-
表 1 HPC混凝土配合比
Table 1. Mix proportion of high performance concrete
材料 水泥 粉煤灰 矿粉 水 砂 石子 抑制剂 减水剂 阻锈剂 用量/(kg·m-3) 282.0 94.0 94.0 155.0 739.0 1 022.0 6.1 18.8 6.1 表 2 C40 NC配合比
Table 2. Mix proportion of C40 normal concrete
材料 水泥 水 砂 石 减水剂 用量/(kg·m-3) 487 185 533 1 245 6.8 表 3 HPC-NC梯度柱氯盐干湿循环试验工况
Table 3. Chloride dry-wet cycle test conditions of HPC-NC gradient columns
试件编号 构件类型 阻锈剂 侵蚀抑制剂 干湿循环周期/d T1-1-1-120 梯度 有 有 120 T2-1-0-120 梯度 有 无 120 T3-0-0-120 梯度 无 无 120 T4-1-0-120 梯度 有 无 120 T5-0-0-120 梯度 无 无 120 T6-0-0-90 梯度 无 无 90 T7-0-0-60 梯度 无 无 60 P0-0-0-120 普通 无 无 120 表 4 不同试验时长氯离子侵蚀深度
Table 4. Chloride ion erosion depths at different test times
试件 各测点氯离子侵蚀深度/mm 平均深度/mm 1 2 3 4 5 6 7 T5-0-0-120 上部干湿循环 22.1 22.7 17.8 19.6 21.5 23.1 17.5 20.6 下部长期浸泡 19.8 24.7 22.5 18.9 16.7 20.3 19.9 20.4 T6-0-0-90 上部干湿循环 16.7 21.2 17.8 21.3 18.4 17.5 18.8 18.8 下部长期浸泡 17.3 16.9 18.3 15.4 17.7 21.3 16.4 17.6 T7-0-0-60 上部干湿循环 15.3 18.6 11.1 10.6 14.8 13.2 18.3 14.5 下部长期浸泡 11.6 15.7 14.5 18.5 19.4 11.4 15.7 15.3 表 5 各试件氯离子含量峰值
Table 5. Peak chloride ion contents of each specimen
% 试验条件 T1-1-1-120 T2-1-0-120 T3-0-0-120 T4-1-0-120 T5-0-0-120 T6-0-0-90 T7-0-0-60 P0-0-0-120 下部长期浸泡 0.521 0.536 0.531 0.524 0.504 0.457 0.406 0.517 上部干湿循环 0.511 0.518 0.561 0.522 0.549 0.467 0.426 0.621 表 6 扩散系数拟合结果
Table 6. Fitting results of diffusion coefficient
试件 扩散系数/(10-6 mm2·s-1) 相关系数 标准差/(10-10 mm2·s-1) 干湿循环 长期浸泡 干湿循环 长期浸泡 干湿循环 长期浸泡 T7-0-0-60 2.21 4.55 0.982 3 0.990 2 3.06 1.59 T6-0-0-90 1.94 3.99 0.973 9 0.993 3 6.98 1.48 T5-0-0-120 1.78 3.57 0.979 1 0.992 3 4.67 1.47 P0-0-0-120 4.18 3.54 0.971 0 0.972 6 10.00 5.74 表 7 不同保护层厚度下钢筋初锈预警时间
Table 7. Early warning times of initial rust of steel bars with different protective layer thicknesses
保护层厚度/ mm 钢筋初锈时间/a 无外掺作用技术基准 单阻锈剂作用HPC 双掺作用HPC 60 26 35 41 65 30 46 56 70 35 54 64 75 41 63 73 80 47 71 85 -
[1] 赵羽习. 钢筋锈蚀引起混凝土结构锈裂综述[J]. 东南大学学报(自然科学版), 2013, 43(5): 1122-1134.ZHAO Yu-xi. State-of-art of corrosion-induced cracking of reinforced concrete structures[J]. Journal of Southeast University (Natural Science Edition), 2013, 43(5): 1122-1134. (in Chinese) [2] 梅葵花, 亢文波, 刘洋, 等. 氯盐环境下预损伤UHPC-HPC组合梁抗弯性能[J]. 交通运输工程学报, 2024, 24(1): 117-130. doi: 10.19818/j.cnki.1671-1637.2024.01.007MEI Kui-hua, KANG Wen-bo, LIU Yang, et al. Flexural behavior of pre-damaged UHPC-HPC composite beams in chloride corrosion environment[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 117-130. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2024.01.007 [3] MASTALI M, MASTALI M, ABDOLLAHNEJAD Z, et al. Numerical evaluations of functionally graded RC slabs[J]. Chinese Journal of Engineering, 2014, 2014: 768956. [4] AYLIE H, GAN B S, AS'AD S, et al. Parametric study of the load carrying capacity of functionally graded concrete of flexural member[J]. International Journal of Engineering and Technology, 2015, 5(4): 233-241. [5] 王信刚, 王睿, 宋固全. 一种超高耐久混凝土——梯度结构混凝土[J]. 南昌大学学报(理科版), 2009, 33(1): 98-102.WANG Xin-gang, WANG Rui, SONG Gu-quan. A kind of ultra high durability concrete—gradient structural concrete[J]. Journal of Nanchang University (Natural Science), 2009, 33(1): 98-102. (in Chinese) [6] 温小栋, 俞林飞, 屠建龙, 等. 海洋浪溅环境下功能梯度混凝土的防护性能分析[J]. 中南大学学报(自然科学版), 2013, 44(2): 792-798.WEN Xiao-dong, YU Lin-fei, TU Jian-long, et al. Analysis of protective performance of gradient structure concrete in marine splash zone[J]. Journal of Central South University (Science and Technology), 2013, 44(2): 792-798. (in Chinese) [7] 姬永生, 袁迎曙. 干湿循环作用下氯离子在混凝土中的侵蚀过程分析[J]. 工业建筑, 2006, 36(12): 16-19, 23.JI Yong-sheng, YUAN Ying-shu. Transport process of chloride in concrete under wet and dry cycles[J]. Industrial Construction, 2006, 36(12): 16-19, 23. (in Chinese) [8] 张奕. 氯离子在混凝土中的输运机理研究[D]. 杭州: 浙江大学, 2008.ZHANG Yi. Mechanism of chloride ions transport in concrete[D]. Hangzhou: Zhejiang University, 2008. (in Chinese) [9] SUTRISNO W, SUPROBO P, WAHYUNI E, et al. Experimental test of chloride penetration in reinforced concrete subjected to wetting and drying cycle[J]. Applied Mechanics and Materials, 2016, 851: 846-851. doi: 10.4028/www.scientific.net/AMM.851.846 [10] 谭业文, 王曙光, 刘伟庆, 等. 粉煤灰对混凝土抗氯盐侵蚀性能的影响[J]. 混凝土, 2017(7): 144-148.TAN Ye-wen, WANG Shu-guang, LIU Wei-qing, et al. Influence of fly ash on concrete's ability to resist chloride ion penetration[J]. Concrete, 2017(7): 144-148. (in Chinese) [11] TING M Z Y, WONG K S, RAHMAN M E, et al. Deterioration of marine concrete exposed to wetting-drying action[J]. Journal of Cleaner Production, 2021, 278: 123383. doi: 10.1016/j.jclepro.2020.123383 [12] LU Chun-hua, GAO Yuan, CUI Zhao-wei, et al. Experimental analysis of chloride penetration into concrete subjected to drying-wetting cycles[J]. Journal of Materials in Civil Engineering, 2015, 27(12): 04015036. doi: 10.1061/(ASCE)MT.1943-5533.0001304 [13] 余红发, 孙伟, 麻海燕, 等. 混凝土在多重因素作用下的氯离子扩散方程[J]. 建筑材料学报, 2002, 5(3): 240-247.YU Hong-fa, SUN Wei, MA Hai-yan, et al. Diffusion equations of chloride ion in concrete under the combined action of durability factors[J]. Journal of Building Materials, 2002, 5(3): 240-247. (in Chinese) [14] 涂永明, 吕志涛. 应力状态下混凝土结构的盐雾侵蚀试验研究[J]. 工业建筑, 2004, 34(5): 1-3, 10.TU Yong-ming, LUY Zhi-tao. The experimental research on prestressed concrete structure under salt fog corrosion environment[J]. Industrial Construction, 2004, 34(5): 1-3, 10. (in Chinese) [15] 赵羽习, 王传坤, 金伟良, 等. 混凝土表面氯离子浓度时变规律试验研究[J]. 土木建筑与环境工程, 2010, 32(3): 8-13.ZHAO Yu-xi, WANG Chuan-kun, JIN Wei-liang, et al. Experimental analysis on time-dependent law of surface chloride ion concentration of concrete[J]. Journal of Civil, Architectural and Environmental Engineering, 2010, 32(3): 8-13. (in Chinese) [16] GJØRV O E. Durability of concrete structures[J]. Arabian Journal for Science and Engineering, 2011, 36(2): 151-172. doi: 10.1007/s13369-010-0033-5 [17] NOGUEIRA C G, LEONEL E D. Probabilistic models applied to safety assessment of reinforced concrete structures subjected to chloride ingress[J]. Engineering Failure Analysis, 2013, 31: 76-89. doi: 10.1016/j.engfailanal.2013.01.023 [18] 谢祥明, 莫海鸿. 大掺量矿渣微粉提高混凝土抗氯离子渗透性的研究[J]. 水利学报, 2005, 36(6): 737-740.XIE Xiang-ming, MO Hai-hong. Experimental study on improving resistance to chloride ion osmosis of concrete by means of adding large amount of fine slag powder[J]. Journal of Hydraulic Engineering, 2005, 36(6): 737-740. (in Chinese) [19] EN 1992-1-1, Eurocode 2: Design of concrete structures-Part 1-1: General rules and rules for buildings[S]. [20] 周翔, 苏骏, 左国望. 氯盐环境下混凝土氯离子传输和钢筋锈蚀研究[J]. 湖北工业大学学报, 2020, 35(1): 75-78.ZHOU Xiang, SU Jun, ZUO Guo-wang. Study on chloride ion transport in concrete and steel corrosion in chloride environment[J]. Journal of Hubei University of Technology, 2020, 35(1): 75-78. (in Chinese) [21] 刘燕, 王泽坤, 李忠献, 等. 冻融-干湿耦合循环下粉煤灰混凝土损伤度分析[J]. 混凝土, 2020(5): 32-35, 39.LIU Yan, WANG Ze-kun, LI Zhong-xian et al. Analysis on the damage degree of fly ash concrete under freeze-thaw-dry-wet coupling cycle[J]. Concrete, 2020(5): 32-35, 39. (in Chinese) [22] 许泽启, 麻海燕, 余红发, 等. 海洋混凝土结构表面自由氯离子含量时变规律及对其寿命影响[J]. 海洋工程, 2017, 35(4): 126-134.XU Ze-qi, MA Hai-yan, YU Hong-fa, et al. Time variation law of free chlorine ion content in the surface of marine concrete structure and its influence on life[J]. The Ocean Engineering, 2017, 35(4): 126-134. (in Chinese) [23] 王晨飞. 氯盐环境下聚丙烯纤维混凝土耐久性能研究[D]. 西安: 西安建筑科技大学, 2012.WANG Chen-fei. Study on durability of polypropylene fiber concrete in chloride environment[D]. Xi'an: Xi'an University of Architecture and Technology, 2013. (in Chinese) [24] THOMAS M D A, BAMFORTH P B, Modelling chloride diffusion in concrete[J]. Cement and Concrete Research, 1999, 29(4): 487-495. doi: 10.1016/S0008-8846(98)00192-6 [25] HONG K, HOOTON R D. Effects of cyclic chloride exposure on penetration of concrete cover[J]. Cement and Concrete Research, 1999, 29(9): 1379-1386. doi: 10.1016/S0008-8846(99)00073-3 [26] 吴灵杰. 港口工程混凝土结构氯离子侵入与耐久性评估[D]. 上海: 上海交通大学, 2016.WU Ling-jie. Chloride penetration and durability assessment of harbor concrete structures[D]. Shanghai: Shanghai Jiao Tong University, 2016. (in Chinese) [27] 杨文武, 钱觉时, 黄煜镔. 海洋环境下混凝土抗冻性和氯离子扩散性的实验与评价方法研究[J]. 材料导报, 2008, 22(12): 74-77.YANG Wen-wu, QIAN Jue-shi, HUANG Yu-bin. Study on test and evaluation methods of frost-resistance and chloride ion diffusion of concrete in a marine environment[J]. Materials Reports, 2008, 22(12): 74-77. (in Chinese) [28] HELLAND S, AARSTEIN R, MAAGE M. In-field performance of North Sea offshore platforms with regard to chloride resistance[J]. Structural Concrete, 2010, 11(1): 15-24. [29] 丁娅, 秦晓川, 周莹, 等. 氯离子侵蚀下钢筋混凝土结构耐久性寿命预测——经典模型对比与分析[J]. 混凝土, 2020(12): 15-20.DING Ya, QIN Xiao-chuan, ZHOU Yin, et al. Durability life prediction of reinforced concrete structures under chloride ingress: a review of classical models[J]. Concrete, 2020, 374(12): 15-20. (in Chinese) [30] 毛江鸿, 金伟良, 李志远, 等. 氯盐侵蚀钢筋混凝土桥梁耐久性提升及寿命预测[J]. 中国公路学报, 2016, 29(1): 61-66.MAO Jiang-hong, JIN Wei-liang, LI Zhi-yuan, et al. Durability improvement and service life prediction of reinforced concrete bridge under chloride attack[J]. China Journal of Highway and Transport, 2016, 29(1): 61-66. (in Chinese)