留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于社交隐式模型的运输类飞机人员疏散轨迹预测

陈琨 李放 冯振宇 陈向明 段龙坤

陈琨, 李放, 冯振宇, 陈向明, 段龙坤. 基于社交隐式模型的运输类飞机人员疏散轨迹预测[J]. 交通运输工程学报, 2024, 24(5): 270-284. doi: 10.19818/j.cnki.1671-1637.2024.05.018
引用本文: 陈琨, 李放, 冯振宇, 陈向明, 段龙坤. 基于社交隐式模型的运输类飞机人员疏散轨迹预测[J]. 交通运输工程学报, 2024, 24(5): 270-284. doi: 10.19818/j.cnki.1671-1637.2024.05.018
CHEN Kun, LI Fang, FENG Zhen-yu, CHEN Xiang-ming, DUAN Long-kun. Evacuation trajectory prediction of passengers in transport aircraft based on social-implicit model[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 270-284. doi: 10.19818/j.cnki.1671-1637.2024.05.018
Citation: CHEN Kun, LI Fang, FENG Zhen-yu, CHEN Xiang-ming, DUAN Long-kun. Evacuation trajectory prediction of passengers in transport aircraft based on social-implicit model[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 270-284. doi: 10.19818/j.cnki.1671-1637.2024.05.018

基于社交隐式模型的运输类飞机人员疏散轨迹预测

doi: 10.19818/j.cnki.1671-1637.2024.05.018
基金项目: 

国家重点研发计划 2022YFB4301000

中央高校基本科研业务费专项资金项目 3122017085

详细信息
    作者简介:

    陈琨(1984-),男,贵州都匀人,中国民航大学副教授,工学博士,从事民用航空器结构安全评估与人员保护领域研究

    通讯作者:

    冯振宇(1966-),男,河北衡水人,中国民航大学教授,工学博士

  • 中图分类号: V328

Evacuation trajectory prediction of passengers in transport aircraft based on social-implicit model

Funds: 

National Key Research and Development Program of China 2022YFB4301000

Fundamental Research Funds for the Central Universities 3122017085

More Information
    Author Bio:

    CHEN Kun(1984-), male, associate professor, PhD, E-mail: kchen@cauc.edu.cn

    FENG Zhen-yu(1966-), male, professor, PhD, E-mail: mhfzy@163.com

  • 摘要: 为精准预测运输类飞机在狭窄空间内紧急情况下的乘客疏散轨迹,构建了基于深度学习的社交隐式(Social-Implicit)模型,该模型包括社交区域、社交神经元和社交损失3个模块,通过轨迹聚类和卷积神经网络处理乘客在不同状态下的行为变化和动态交互;基于波音737-800模拟舱应急撤离试验,采集了乘客的运动状态与冲突行为数据,结合社会力模型参数标定生成了训练数据集,利用该数据集对Social-Implicit模型进行训练和验证,并从平均位移误差(ADE)、最终位移误差(FDE)、平均马氏距离(AMD)和平均最大特征值(AME)四方面评估了模型的预测效果。分析结果表明:Social-Implicit模型在构建的应急撤离数据集上表现良好,ADE为0.011 m,FDE为0.02 m,相比苏黎世联邦理工学院行人数据集和塞浦路斯大学行人数据集均降低了97%,AMD和AME精度分别提高了72.4%和94.1%,说明模型在狭窄环境中捕捉乘客轨迹变化方面表现优异;该模型的撤离时间、路径、速度和瓶颈位置预测都与社会力模型结果非常接近,疏散效率分别为1.92和1.93,路径预测能准确捕捉人员卡塞位置,速度误差不超过0.02 m·s-1,瓶颈位置误差在每平方米0.41人以内,表明模型能够模拟乘客疏散中拥堵特征;与社会力模型相比,基于深度学习的Social-Implicit模型的运行时间从65.000 s显著缩短至0.021 s,模型内存减小了78.02%,因此,Social-Implicit模型能够为民航应急疏散系统的优化提供高效、准确的轨迹预测与性能评估方法。

     

  • 图  1  波音737-800模拟舱外部

    Figure  1.  Boeing 737-800 simulation cabin exterior

    图  2  波音737-800模拟舱数据采集

    Figure  2.  Boeing 737-800 simulation cabin data acquisition

    图  3  波音737-800模拟舱平面布局

    Figure  3.  Boeing 737-800 simulation cabin layout plan

    图  4  应急撤离试验过程

    Figure  4.  Emergency evacuation experiment process

    图  5  数据处理流程

    Figure  5.  Data processing process

    图  6  仿真场景布局

    Figure  6.  Simulation scene layout

    图  7  仿真撤离时间分布

    Figure  7.  Simulation evacuation time distribution

    图  8  社交隐式模型结构

    Figure  8.  Social-implicit model structure

    图  9  社交神经元模型结构

    Figure  9.  Social neuron model structure

    图  10  平均撤离时间

    Figure  10.  Mean evacuation time

    图  11  人员撤离次序

    Figure  11.  Personnel evacuation sequences

    图  12  仿真与预测撤离路径

    Figure  12.  Simulated and predicted evacuation paths

    图  13  人员撤离瓶颈位置

    Figure  13.  Bottleneck locations for personnel evacuate

    图  14  瓶颈位置对比

    Figure  14.  Bottleneck position comparison

    表  1  参试人员各项数据指标

    Table  1.   Various data indicators of participants

    年龄/岁 人数 身高/cm 人数 体重/kg 人数
    [0, 20) 4 [150, 160) 3 [40, 45) 1
    [20, 25) 20 [160, 170) 19 [45, 55) 15
    [25, 30) 5 [170, 180) 24 [55, 65) 18
    [30, 40) 3 [180, 190) 8 [65, 75) 13
    [50, 60] 22 [190, 200) 0 [75, 100) 7
    下载: 导出CSV

    表  2  障碍物仿真参数

    Table  2.   Obstacle simulation parameters

    障碍物位置 参数
    座椅到主过道 A2/(m·s-2) 3.00 B2/m 0.08
    主过道到客舱前部 2.00 0.50
    应急出口处 3.00 0.08
    下载: 导出CSV

    表  3  机组人员仿真参数

    Table  3.   Crew simulation parameters

    机组人员情况 参数
    疏散人员质量/kg 60±15
    期望速度/(m·s-1) 0.65±0.20
    松弛时间/s 0.50
    下载: 导出CSV

    表  4  训练参数设置

    Table  4.   Training parameter settings

    网络参数 结果
    训练批次 128
    训练轮次 100
    训练帧数 8
    预测帧数 12
    激活函数 PReLU
    学习率 0.010/0.002
    相关权值 0.000 1
    下载: 导出CSV

    表  5  不同数据集下模型的ADE

    Table  5.   ADE of models under different datasets  m

    数据集 城市街道 酒店入口 大学校园 商业区1 商业区2 均值 客舱
    Social-Implicit[40] 0.660 0.200 0.310 0.250 0.220 0.330 0.011
    S-GAN[39] 0.810 0.720 0.600 0.340 0.420 0.580 M
    Trajectron[40] 0.390 0.120 0.200 0.150 0.110 0.190 M
    ExpertTraj[44] 0.300 0.090 0.190 0.150 0.120 0.170 M
    Social-STGCNN[44] 0.640 0.490 0.440 0.340 0.300 0.440 0.430
    下载: 导出CSV

    表  6  不同数据集下模型的FDE

    Table  6.   FDE of models under different datasets m

    数据集 城市街道 酒店入口 大学校园 商业区1 商业区2 均值 客舱
    Social-Implicit[40] 1.440 0.360 0.600 0.500 0.430 0.670 0.020
    S-GAN[39] 1.520 1.610 1.260 0.690 0.840 1.180 M
    Trajectron[40] 0.830 0.210 0.440 0.330 0.250 0.410 M
    ExpertTraj[44] 0.620 0.150 0.440 0.310 0.240 0.350 M
    Social-STGCNN[44] 1.110 0.850 0.790 0.530 0.540 0.750 0.640
    下载: 导出CSV

    表  7  不同数据集下模型的AMD

    Table  7.   AMD of models under different datasets

    数据集 城市街道 酒店入口 大学校园 商业区1 商业区2 均值 客舱
    Social-Implicit[40] 3.050 0.580 1.650 1.720 1.160 1.630 1.180
    S-GAN[39] 3.940 2.590 2.370 1.790 1.660 2.470 M
    Trajectron[40] 3.040 1.980 1.730 1.210 1.230 1.840 M
    ExpertTraj[44] 61.770 21.300 M 32.140 M 38.400 M
    Social-STGCNN[44] 3.730 1.670 3.310 1.650 11.570 2.390 4.320
    下载: 导出CSV

    表  8  不同数据集下模型的AME

    Table  8.   AME of models under different datasets

    数据集 城市街道 酒店入口 大学校园 商业区1 商业区2 均值 客舱
    Social-Implicit[40] 0.130 0.410 0.150 0.078 0.110 0.170 0.013
    S-GAN[39] 0.373 0.384 0.440 0.355 0.254 0.361 M
    Trajectron[40] 0.286 0.114 0.228 0.171 0.116 0.183 M
    ExpertTraj[44] 0.034 0.003 M 0.005 M 0.004 M
    Social-STGCNN[44] 0.094 0.297 0.060 0.149 0.103 0.104 0.114
    下载: 导出CSV

    表  9  乘客撤离速度对比

    Table  9.   Comparison of evacuation speed among passengers

    模型类型 平均撤离率 平均撤离速度/(m·s-1)
    A~C排 D~F排 G~I排
    DL 0.536 0.947 0.539 0.458
    SF 0.541 0.967 0.524 0.475
    下载: 导出CSV

    表  10  模型大小与运行时间

    Table  10.   Size and run time of model

    模型类型 模型大小/kB 运行时间/s
    DL 71 0.021
    SF 323 65.000
    下载: 导出CSV
  • [1] Aviation Safety Network. ASN aviation safety WikiBase 1999-2021[EB/OL]. 2021, https://asn.flightsafety.org/.
    [2] Airbus. A statistical analysis of commercial aviation accidents 1958-2021[R]. Blagnac: Airbus, 2022.
    [3] MOTEVALLI V, MONAJEMI L, RASSI M. Evaluation and mitigation of aircraft slide evacuation injuries[R]. Washington DC: Transportation Research Board, 2008.
    [4] MARCUS J H. A review of computer evacuation models and their data needs[R]. Washington DC: Civil Aeromedical Institute, 1994.
    [5] DOPART K. Aircraft evacuation testing: research and technology issues[R]. Washington DC: Office of Technology Assessment, 1993.
    [6] Australian Business Traveller. Supersizing the superjumbo: airbus says 1 000 seat A380 due 2020[EB/OL]. 2019, https://www.executivetraveller.com/supersizing-the-superjumbo-1-000-seat-airbus-a380-due-by-2020.
    [7] 封文春, 李伟, 张桐, 等. 基于社会属性的民机复杂群体应急撤离仿真与试验研究[J]. 西北工业大学学报, 2022, 40(4): 853-864.

    FENG Wen-chun, LI Wei, ZHANG Tong, et al. Emergency evacuation simulation and test research of civil aircraft complex groups based on the social attribute[J]. Journal of Northwestern Polytechnical University, 2022, 40(4): 853-864. (in Chinese).
    [8] HARRIS D, MUIR H C. Contemporary Issues in Human Factors and Aviation Safety[M]. Hampshire: Ashgate, 2005.
    [9] MUIR H, THOMAS L. Passenger safety and very large transportation aircraft[J]. Aircraft Engineering and Aerospace Technology, 2004, 76(5): 479-486. doi: 10.1108/00022660410555158
    [10] GALEA E R, BLAKE S J, GWYNNE S, et al. The use of evacuation modelling techniques in the design of very large transport aircraft and blended wing body aircraft[J]. The Aeronautical Journal, 2003, 107(1070): 207-218. doi: 10.1017/S0001924000013270
    [11] GALEA E R. Proposed methodology for the use of computer simulation to enhance aircraft evacuation certification[J]. Journal of Aircraft, 2006, 43(5): 1405-1413. doi: 10.2514/1.20937
    [12] ROBBINS C R, MCKEE S. Simulating the evacuation of a commercial airliner[J]. The Aeronautical Journal, 2001, 105(1048): 323-328. doi: 10.1017/S0001924000012203
    [13] XUE Z D, BLOEBAUM C. A particle swarm optimization based aircraft evacuation simulation model-VacateAir[C]//AIAA. 46th AIAA Aerospace Sciences Meeting and Exhibit. Reston: AIAA, 2008: 1-20.
    [14] XUE Z D, BLOEBAUM C. Experimental design based aircraft egress analysis using VacateAir-an aircraft evacuation simulation model[C]//AIAA. 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston: AIAA, 2008: 6061.
    [15] 姜星宇, 辛月兰, 刘卫铭. 基于压缩轻量化深层神经网络的车辆检测模型[J]. 信息技术, 2020, 44(7): 23-27, 32.

    JIANG Xing-yu, XIN Yue-lan, LIU Wei-ming. Vehicle detection model based on compressedand lightweight deep neural network[J]. Information Technology, 2020, 44(7): 23-27, 32. (in Chinese).
    [16] 王纪军, 靖慧, 冯曙明, 等. 基于Faster R-CNN的仓库视频监控目标检测方法研究[J]. 信息技术, 2019, 43(7): 92-96.

    WANG Ji-jun, JING Hui, FENG Shu-ming, et al. Object detection method of video monitoring in power warehouse based on Faster R-CNN[J]. Information Technology, 2019, 43(7): 92-96. (in Chinese).
    [17] GIRSHICK R. Fast R-CNN[C]//IEEE. 2015 IEEE International Conference on Computer Vision (ICCV). New York: IEEE, 2015: 1440-1448.
    [18] 罗靖遥, 黄征. 基于CNN分类器和卷积的目标检测[J]. 信息技术, 2017, 41(9): 101-104, 108.

    LUO Jing-yao, HUANG Zheng. Target detection based on CNN classifier and convolution[J]. Information Technology, 2017, 41(9): 101-104, 108. (in Chinese).
    [19] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149. doi: 10.1109/TPAMI.2016.2577031
    [20] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2016: 779-788.
    [21] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//Springer. European Conference on Computer Vision (ECCV). Berlin: Springer, 2016: 21-37.
    [22] IANDOLA F N, HAN S, MOSKEWICZ M W, et al. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[C]//ICLR. Proceedings of the 5th International Conference on Learning Representations. New York: ICLR, 2016: 1-13.
    [23] SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: inverted residuals and linear bottlenecks[C]//IEEE. 2018 IEEE/CFV Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 4510-4520.
    [24] 宣琦, 李甫宪. 基于多时长特征融合的人体行为识别方法[J]. 浙江工业大学学报, 2020, 48(4): 361-366.

    XUAN Qi, LI Fu-xian. Action recognition method based on multiple duration feature fusion[J]. Journal of Zhejiang University of Technology, 2020, 48(4): 361-366. (in Chinese).
    [25] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. doi: 10.1162/neco.2006.18.7.1527
    [26] 谭紫阳, 高忠文, 邓宇. 基于改进极限学习机和深度神经网络融合的车辆轨迹长期预测[J]. 汽车技术, 2020(11): 16-20.

    TAN Zi-yang, GAO Zhong-wen, DENG Yu, et al. The long term prediction of vehicle trajectory based on improved extreme learning machine and depth neural network fusion[J]. Automobile Technology, 2020(11): 16-20. (in Chinese).
    [27] GUPTA A, JOHNSON J, LI F F, et al. Social GAN: socially acceptable trajectories with generative adversarial networks[C]//IEEE. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 2255-2264.
    [28] SADEGHIAN A, KOSARAJU V, SADEGHIAN A, et al. SoPhie: an attentive GAN for predicting paths compliant to social and physical constraints[C]//IEEE. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2019: 1349-1358.
    [29] CARTLIDGE J, GONG S H, BAI R B, et al. Spatio-temporal prediction of shopping behaviours using taxi trajectory data[C]// IEEE. 2018 IEEE 3rd International Conference on Big Data Analysis. New York: IEEE, 2018: 112-116.
    [30] 乔少杰, 金琨, 韩楠, 等. 一种基于高斯混合模型的轨迹预测算法[J]. 软件学报, 2015, 26(5): 1048-1063.

    QIAO Shao-jie, JIN Kun, HAN Nan, et al. Trajectory prediction algorithm based on Gaussian mixture model[J]. Journal of Software, 2015, 26(5): 1048-1063. (in Chinese).
    [31] PECHER P, HUNTER M, FUJIMOTO R. Data-driven vehicle trajectory prediction[C]//ACM. Proceedings of the 2016 ACM SIGSIM Conference on Principles of Advanced Discrete Simulation. New York: ACM, 2016: 13-22.
    [32] 张凯. 基于海量出租车轨迹数据的学习与预测[D]. 西安: 长安大学, 2019.

    ZHANG Kai. Learning and prediction based on massive taxi trajectory data[D]. Xi'an: Chang'an University, 2019. (in Chinese).
    [33] MUIR H, COBBETT A. Aircraft evacuation tests—an initial assessment of the influence of various aisle configurations and lighting conditions under different evacuation scenarios[R]. Montreal: Transportation Development Centre, 1996.
    [34] 吴义兵. 基于社会力模型的飞机应急撤离仿真研究[D]. 天津: 中国民航大学, 2018.

    WU Yi-bing. Research on aircraft emergency evacuation simulation based on social force model[D]. Tianjin: Civil Aviation University of China, 2018. (in Chinese).
    [35] 杜月娟. 大型客机应急撤离仿真及参数影响性分析[D]. 天津: 中国民航大学, 2017.

    DU Yue-juan. Civil aircraft emergency evacuation simulation and analysis of parameter influence[D]. Tianjin: Civil Aviation University of China, 2017. (in Chinese).
    [36] 宋娜. 飞机乘员应急撤离瓶颈分析与仿真研究[D]. 天津: 中国民航大学, 2020.

    SONG Na. Bottleneck analysis and simulation of emergency evacuation of aircraft crew[D]. Tianjin: Civil Aviation University of China, 2020. (in Chinese).
    [37] PELLEGRINI S, ESS A, SCHINDLER K, et al. You'll never walk alone: modeling social behavior for multi-target tracking[C]//IEEE. 2009 IEEE 12th International Conference on Computer Vision. New York: IEEE, 2009: 261-268.
    [38] LERNER A, CHRYSANTHOU Y, LISHINSKI D. Crowds by example[J]. Computer Graphics Forum, 2007, 26(3): 655-664. doi: 10.1111/j.1467-8659.2007.01089.x
    [39] HELBING D, JOHANSSON A. Encyclopedia of Complexity and Systems Science[M]. New York: Springer, 2013.
    [40] MOHAMED A, ZHU D Y, VU W, et al. Social-implicit: rethinking trajectory prediction evaluation and the effectiveness of implicit maximum likelihood estimation[C]//Springer. Proceedings of the European Conference on Computer Vision. Berlin: Springer, 2022: 463-479.
    [41] ALAHI A, GOEL K, RAMANATHAN V, et al. Social LSTM: human trajectory prediction in crowded spaces[C]// IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2016: 961-971.
    [42] IVANOVIC B, PAVONE M. The trajectron: probabilistic multi-agent trajectory modeling with dynamic spatiotemporal graphs[C]//IEEE 2019 IEEE/CVF International Conference on Computer Vision (ICCV). New York: IEEE, 2019: 2375-2384.
    [43] MONTI A, BERTUGLI A, CALDERARA S, et al. DAG-net: double attentive graph neural network for trajectory forecasting[C]//IEEE. 2020 25th International Conference on Pattern Recognition (ICPR). New York: IEEE, 2021: 2804-2810.
    [44] MOHAMED A, QIAN K, ELHOSEINY M, et al. Social- STGCNN: a social spatio-temporal graph convolutional neural network for human trajectory prediction[C]//IEEE. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2020: 14424-14432.
    [45] ZHANG J, KLINGSCH W, SCHADSCHNEIDER A, et al. Transitions in pedestrian fundamental diagrams of straight corridors and T-junctions[J]. Journal of Statistical Mechanics: Theory and Experiment, 2011, 2011(6): P06004.
  • 加载中
图(14) / 表(10)
计量
  • 文章访问数:  10
  • HTML全文浏览量:  5
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-04-20
  • 网络出版日期:  2024-12-20
  • 刊出日期:  2024-10-25

目录

    /

    返回文章
    返回