-
摘要: 为推动地图匹配技术的发展,从匹配方法角度深入研究地图匹配算法并分类阐述原理、特点及应用场景,全面介绍了现有地图匹配数据集,总结了地图匹配在智能交通领域的应用场景,提出了地图匹配技术未来的研究方向。研究结果表明:GPS数据的准确性和完整性可能会因多种因素而受到影响,导致轨迹数据变得稀疏,稀疏的GPS轨迹会导致车辆的实际行驶路径无法被准确还原,增加地图匹配的不确定性;车道级匹配需求因智能交通系统的发展、自动驾驶技术的兴起和城市交通网络的日益复杂等因素而日益迫切;未来地图匹配技术的研究方向主要集中在2个方面;对于稀疏轨迹的地图匹配技术,需聚焦数据插值技术,提高轨迹的连续性,运用多传感器数据融合技术,增强定位的准确性和可靠性,应用深度学习技术,提高匹配算法的智能水平;对于车道级的地图匹配技术,重点在于整合高精度地图数据和实时交通信息,提供更准确的道路特征和交通状况信息,优化深度学习模型,识别复杂的交通模式和道路特征,开发适应动态交通环境的算法,提高算法的稳定性和适应性;这些研究方向将有助于提高地图匹配技术的准确性、可靠性和实时性,为智能交通系统和自动驾驶技术提供更有力的支持。Abstract: To promote the development of map matching technology, an in-depth study of map-matching algorithms was conducted from the perspective of matching methods. The principles, characteristics, and application scenarios were classified and described. The existing map matching datasets were comprehensively introduced. The application scenarios of map matching in the field of intelligent transportation were summarized, and future research directions for map matching technology were proposed. Research results indicate that the accuracy and completeness of global position system (GPS) data can be affected by various factors, which results in sparse trajectory data. Sparse GPS trajectories can result in the inability to accurately reconstruct the actual driving paths of vehicles, increasing the uncertainty in map matching. The demand for lane-level matching has become increasingly urgent due to the development of intelligent transportation systems, the rise of autonomous driving technology, and the growing complexity of urban transportation networks. The future research directions of map matching technology primarily focus on two aspects. For map matching technology with sparse trajectories, attention needs to be paid to data interpolation techniques to improve trajectory continuity, multi-sensor data fusion technology should be employed to enhance the accuracy and reliability of positioning, and deep learning techniques should be applied to improve the intelligence level of matching algorithms. For lane-level map matching technology, the focus lies in integrating high-precision map data with real-time traffic information to provide more accurate information on road characteristics and traffic conditions, optimizing deep learning models to recognize complex traffic patterns and road characteristics, and developing algorithms that adapt to dynamic traffic environments to obtain algorithms with improved stability and adaptability. These research directions will help enhance the accuracy, reliability, and real-time performance of map matching technology and provide stronger support for intelligent transportation system and autonomous driving technology.
-
Key words:
- intelligent transportation system /
- map matching /
- hidden Markov model /
- deep learning /
- GPS trajectory
-
表 1 各类地图匹配算法简介
Table 1. Introduction of various map matching algorithms
算法 匹配方法 文献 特点 适用场景 传统地图匹配算法 几何 [13] 简单高效,易于实现,对噪声敏感 适用于道路网络较为简单或者对实时性要求较高的情况 拓扑 [14] 快速确定候选路段,实时性好,受初始匹配结果影响较大,容错性差 适用于道路网络结构复杂,例如在城市环境中,平行道路和频繁的路段变更 基于优化算法的地图匹配算法 遗传算法 [15] 全局最优搜索能力,处理复杂问题,容错性,适应性强 适合于需要在多个匹配结果中寻找最优解的复杂道路网络,以及需要快速响应的实时地图匹配应用 蚁群算法 [16] 全局最优解,自适应和局部搜索策略 适用于解决空间数据集中和融合中的关键技术问题,如同名实体匹配,复杂的道路网匹配问题,实时匹配 基于逻辑和推理的地图匹配算法 模糊逻辑 [17] 处理不确定性和模糊性,基于规则的推理,集成多种数据源 适用于复杂的交通网络环境,尤其是在城市密集道路网络中,以及存在不确定性的匹配问题 D-S证据理论 [18] 处理不确定性和证据冲突,鲁棒性 适用于城市复杂路网,车辆监控和管理系统 基于概率统计的地图匹配算法 概率决策 [19] 考虑车辆定位的不确定性,有效减少待匹配的路段数量,对置信区域设置敏感 适用于简单路网环境,定位误差较小的情况,通常需要与其他地图匹配技术结合 滤波器 [20] 考虑传感器误差和地图误差,较高的可信度,效率较低 适用于对定位精度要求较高的场景,如城市复杂道路环境中的车辆导航系统、自动驾驶汽车、无人机导航等 HMM [21] 考虑测量噪声和道路布局,处理时间序列数据,动态规划优化 适合于处理不准确和稀疏的GPS数据 扩展HMM [22] 考虑实时移动方向,综合空间、时间和方向特征,减少计算成本 适用于道路网络复杂,低采样率GPS轨迹,需要更精细匹配结果的场景 基于深度学习的地图匹配算法 [23] 能够处理低质量(噪声、低频率、非均匀采样)的GPS轨迹数据,利用深度学习模型提高匹配质量 适合于需要处理大量复杂轨迹数据的情况,尤其是在数据质量较差时 表 2 基于HMM的地图匹配算法比较
Table 2. Comparison of map matching algorithms based on HMM
算法 具体方法 输入信息 改进 HMM[21] HMM+Viterbi 时间戳的纬度、经度对,道路网络图 通过手动匹配或已知的行驶路线来验证和校正算法 理想HMM[82] 简化的HMM框架+Viterbi 时间戳的纬度、经度对,道路网络图 简化了状态转移概率,使其适应理想HMM框架,以避免在寻找最可能路径时的缺陷 OHMM[83] HMM+VSW+SVW+概率评分机制+Viterbi 车辆的经度、纬度、速度和时间戳,道路网络;其他传感器数据和拓扑信息 利用支持向量机(Support Vector Machine, SVM)来学习转移概率函数,而不是事先选择模型并估计其参数 基于IRL的HMM[84] HMM+IRL+Viterbi+Dijkstra+最大熵IRL GPS数据点,真实路线,道路网络 考虑了转弯次数作为评估路线可能性的指标 混合贝叶斯框架匹配算法[85] 卡尔曼滤波器+HMM+链式状态空间表示 传感器数据,差分全球定位系统(DifferentialGlobal Position System, DGPS)接收器提供的GPS位置数据,道路网络 引入了链式状态空间表示,允许使用精确的线性方程进行多传感器数据融合,提出了一个段选择策略,用于假设跟踪 快速HMM[86] HMM+Dijkstra+懒惰评估 GPS数据点,道路网络,搜索半径 经过优化以减少计算复杂性,特别是在处理稀疏和嘈杂的GPS轨迹数据时 SnapNet[87] 一系列过滤器+插值+增量式HMM+Viterbi 由纬度、经度和误差估计值组成的位置信息,数字地图 运用道路转换启发式规则,处理虚假转换,减少不必要的道路切换 基于HMM的增强模型[88] HMM+Viterbi GPS数据和手机定位数据,道路网络,几何数据,精炼的四叉树数据 对于状态空间的定义,使用四叉树网格结构化道路网络,以减少计算复杂性 FMM[89] 预计算+HMM+Viterbi+空间索引技术+线性引用算法 位置、时间戳、速度、方向和加速度的GPS观测数据,道路网络 通过预计算和使用哈希表搜索来替换重复的路由查询 基于路口决策域和HMM[90] HMM+路口决策域模型+Viterbi 车辆的实时位置信息,道路网络 定义路口决策域,综合道路宽、路口角、GPS及路网精度,划定区域,指导车辆GPS位置匹配,减少误差 基于拓扑关系的快速匹配算法[91] HMM+A*算法+Viterbi 车辆的纬度、经度、时间、速度、方向角度,道路网络数据 预计算每个区域包含的道路段,提高了查找候选道路段的效率,改进了A*算法的启发式搜索效率,减少了计算量 加速HMM[92] HMM+道路网络分割+空间感知启发式方法+Viterbi 原始GPS点,道路网络 通过道路网络分割和空间感知启发式方法显著加速转移概率计算 IHMM[93] 误差置信椭圆+IHMM+Viterbi 原始GPS点,道路网络 基于方向和距离权重的发射概率计算,以及考虑道路段曲率的状态转移概率计算 表 3 基于深度学习的地图匹配算法比较
Table 3. Comparison of map matching algorithms based on deep learning
模型 数据集信息 采样间隔/s 神经网络的输入 神经网络的输出 FNN[98] 郑州城市区域测试车辆GPS轨迹 4 投影距离以及方位角之间的差异 地图匹配度 ANN[99] 芝加哥5条道路区域内的GPS轨迹,包含13 204个GPS点 速度、水平精度因子和常数 GPS点的水平偏移量,包括长度和方向 基于Seq2Seq学习框架,结合注意力机制[100] 北京地区车辆GPS轨迹包含12 436名用户的1 336 567条 11 原始轨迹数据和道路网络信息 匹配后的轨迹和校准后的轨迹 DMM框架[101] 伦敦198条车辆GPS轨迹,总长度为1 701 km,涉及2 848个不同的蜂窝基站 5个等级 蜂窝基站序列,包含了基站的标识符(ID)和时间戳以及道路网络地图 道路轨迹和匹配精度 Transformer[102] 韩国首尔江南区运营的出租车上安装的DTG GPS轨迹 点级或线级路线 RoutesFormer[103] 上海8 407辆出租车的GPS轨迹 60、180、300、420 不连续的路径(道路链接)、已行驶的路径 最有可能的下一个链接、完整推断路径 ImIn-GAIL框架[104] 杭州和洛杉矶地区GPS车辆轨迹 0.1 稀疏驾驶轨迹、驾驶状态、驾驶行为 密集驾驶轨迹、模仿性能、插值性能 L2MM[23] 波尔图市200 000条GPS轨迹、重庆市100 000条GPS轨迹 15 低质量GPS轨迹、高质量GPS轨迹、道路网络数据 映射后的轨迹、轨迹表示、识别的模式 表 4 地图匹配数据集
Table 4. Map matching datasets
数据集类型 数据集名称 是否公开 公开数据集 优点 缺点 GPS数据集 GPS[105-107] 部分公开 GeoLife GPS Trajectories、T-Drive Taxi Trajectories、SynMob等 全球范围覆盖,精度较高 室内效果差,信号易受遮挡,能耗高 传感器数据集 AVI[77-78, 95] 私有 精度高 数据稀疏 INS[108] 部分公开 多IMU车载GNSS/INS数据集、KITTI等 抗干扰能力强,高频采样,短时间内精度较高 长时间使用会产生误差累积,成本较高 PDR[109] 私有 无需外部信号,可与手机传感器结合 误差会随步数增加而累积 SLAM[110-113] 部分公开 UZH-FPV Drone Racing、OpenLORIS-Scene、OxfordRobotCar、Newer College等 实时性好,精度较高 容易受动态障碍物和视线遮挡影响 无线网络数据集 WiFi[114] 部分公开 SODIndoorLoc、RSSI、UJIIndoorLoc等 成本低,覆盖范围广 精度较低,受环境因素干扰大 蓝牙 部分公开 成本低,功耗低 受环境因素干扰大 RFID 私有 精度较高,功耗低 成本高 UWB[116] 部分公开 精度高,抗干扰能力强,实时定位效果好 成本高 地图数据集 OSM[117] 公开 OpenStreetMap 开源,全球覆盖,数据多样 数据精度不均,信息不完整,格式复杂 街景图像[118-120] 部分公开 Google地图、百度地图、高德地图等 提供360°全景视角 隐私问题,存储成本高 -
[1] 于娟, 杨琼, 鲁剑锋, 等. 高级地图匹配算法: 研究现状和趋势[J]. 电子学报, 2021, 49(9): 1818-1829.YU Juan, YANG Qiong, LU Jian-feng, et al. Advanced map matching algorithms: a survey and trends[J]. Acta Electonica Sinica, 2021, 49(9): 1818-1829. (in Chinese) [2] KUBICKA M, CELA A, MOUNIER H, et al. Comparative study and application-oriented classification of vehicular map-matching methods[J]. IEEE Intelligent Transportation Systems Magazine, 2018, 10(2): 150-166. doi: 10.1109/MITS.2018.2806630 [3] 孙健, 张颖, 张纯. 基于驾驶人路径选择偏好的OD行程时间预测方法[J]. 交通运输工程学报, 2016, 16(2): 143-149. doi: 10.19818/j.cnki.1671-1637.2016.02.017SUN Jian, ZHANG Ying, ZHANG Chun. Prediction method of OD travel time based on driver's route choice preference[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 143-149. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2016.02.017 [4] HUANG Zhen-feng, QIAO Shao-jie, HAN Nan, et al. Survey on vehicle map matching techniques[J]. CAAI Transactions on Intelligence Technology, 2021, 6(1): 55-71. doi: 10.1049/cit2.12030 [5] NIKOLIC M, JOVIC J. Implementation of generic algorithm in map-matching model[J]. Expert Systems with Applications, 2017, 72: 283-292. doi: 10.1016/j.eswa.2016.10.061 [6] 廖律超, 蒋新华, 林铭榛, 等. 基于交通轨迹数据挖掘的道路限速信息识别方法[J]. 交通运输工程学报, 2015, 15(5): 118-126. doi: 10.19818/j.cnki.1671-1637.2015.05.015LIAO Lyu-chao, JIANG Xin-hua, LIN Ming-zhen, et al. Recognition method of road speed limit information based on data mining of traffic trajectory[J]. Journal of Traffic and Transportation Engineering, 2015, 15(5): 118-126. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2015.05.015 [7] SIRI E, SIRI S, SACONE S. A topology-based bounded rationality day-to-day traffic assignment model[J]. Communications in Transportation Research, 2022, 2: 1-16. [8] ZHANG Wen-wei, ZHAO Hui, XU Min. Optimal operating strategy of short turning lines for the battery electric bus system[J]. Communications in Transportation Research, 2021, 1: 1-12. [9] 张平, 陈一凡, 江书真, 等. 高速公路上自动超车过程的轨迹规划与跟踪控制[J]. 汽车安全与节能学报, 2022, 13(3): 463-472.ZHANG Ping, CHEN Yi-fan, JIANG Shu-zhen, et al. Trajectory planning and tracking control of automatic overtaking process on highway[J]. Journal of Automotive Safety and Energy, 2022, 13(3): 463-472. (in Chinese) [10] 孙智威, 裴晓飞, 刘一平, 等. 无人驾驶清扫车的路径跟踪及远程控制[J]. 汽车安全与节能学报, 2022, 13(4): 729-737.SUN Zhi-wei, PEI Xiao-fei, LIU Yi-ping, et al. Path tracking and remote control of driverless sweeper[J]. Journal of Automotive Safety and Energy, 2022, 13(4): 729-737. (in Chinese) [11] LIU Zhi-yuan, LIU Yang, LYU Cheng, et al. Building personalized transportation model for online taxi-hailing demand prediction[J]. IEEE Transactions on Cybernetics, 2020, 51(9): 4602-4610. [12] CHAO Ping-fu, XU Ye-hong, HUA Wen, et al. A survey on map-matching algorithms[C]//BOROVICA-GAJIC R. Databases Theory and Applications: 31st Australasian Database Conference. Berlin: Springer, 2020: 121-133. [13] BERNSTEIN D, KORNHAUSER A. An introduction to map matching for personal navigation assistants[J]. New Jersey Institute of Technology, 1998, DOI: 10.1001/archopht.122.7.1082-b. [14] MAHPOUR A, FORSI H, VAFAEENEJAD A, et al. An improvement on the topological map matching algorithm at junctions: a heuristic approach[J]. International Journal of Transportation Engineering, 2022, 9(4): 749-761. [15] 谷远利, 陆文琦, 邵壮壮. 基于多目标遗传算法的浮动车地图匹配方法[J]. 北京工业大学学报, 2019, 45(6): 585-592.GU Yuan-li, LU Wen-qi, SHAO Zhuang-zhuang. Multi-criteria genetic algorithm-based map-matching method for floating car data[J]. Journal of Beijing University of Technology, 2019, 45(6): 585-592. (in Chinese) [16] 王跃钢, 文超斌, 左朝阳, 等. 自适应混沌蚁群径向分析算法求解重力辅助导航匹配问题[J]. 物理学报, 2014, 8(63): 454-459.WANG Yue-gang, WEN Chao-bin, ZUO Chao-yang, et al. Adaptive chaotic ant colony radial analysis algorithm for solving gravity-assist navigation matching problem[J]. Acta Physica Sinica, 2014, 8(63): 454-459. (in Chinese) [17] QUDDUS M A, NOLAND R B, OCHIENG W Y. A high accuracy fuzzy logic based map matching algorithm for road transport[J]. Journal of Intelligent Transportation Systems, 2006, 10(3): 103-115. doi: 10.1080/15472450600793560 [18] 谷正气, 胡林, 黄晶, 等. 基于改进D-S证据理论的车辆导航地图匹配[J]. 汽车工程, 2008, 30(2): 141-145.GU Zheng-qi, HU Lin, HUANG Jing, et al. Vehicle navigation map matching based on modified D-S evidence rule[J]. Automotive Engineering, 2008, 30(2): 141-145. (in Chinese) [19] QUDDUS M A, NOLAND R B, OCHIENG W Y. Validation of map matching algorithms using high precision positioning with GPS[J]. Journal of Navigation, 2005, 58(2): 257-271. doi: 10.1017/S0373463305003231 [20] YU Biao, DONG Lin, XUE De-yi, et al. A hybrid dead reckoning error correction scheme based on extended Kalman filter and map matching for vehicle self-localization[J]. Journal of Intelligent Transportation Systems, 2018, 23(1): 84-98. [21] NEWSON P, KRUMM J. Hidden Markov map matching through noise and sparseness[C]//ACM. Proceedings of the 17th ACM Sigspatial International Conference on Advances in Geographic Information Systems. New York: ACM, 2009: 336-343. [22] HSUEH Y L, CHEN He-qian. Map matching for low-sampling- rate GPS trajectories by exploring real-time moving directions[J]. Information Sciences, 2018, 433: 55-69. [23] JIANG Lin-li, CHEN Chao-xiong, CHEN Chao. L2MM: learning to map matching with deep models for low-quality GPS trajectory data[J]. ACM Transactions on Knowledge Discovery from Data, 2023, 17(3): 1-25. [24] 刘峰, 郭阳, 郑辛, 等. 基于道路几何特征的地图匹配方法研究[J]. 导航定位与授时, 2020, 7(1): 67-72.LIU Feng, GUO Yang, ZHENG Xin, et al. Study on map matching method based on geometric features of road[J]. Navigation Positioning and Timing, 2020, 7(1): 67-72. (in Chinese) [25] MICHAU G, NANTES A, BHASKAR A, et al. Bluetooth data in an urban context: retrieving vehicle trajectories[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(9): 2377-2386. doi: 10.1109/TITS.2016.2642304 [26] WHITE C E, BERNSTEIN D, KORNHAUSER A L. Some map matching algorithms for personal navigation assistants[J]. Transportation Research Part C: Emerging Technologies, 2000, 8(1-6): 91-108. doi: 10.1016/S0968-090X(00)00026-7 [27] 汪小寒, 何增宇, 胡王悟, 等. 复杂路段的角度差和后续点地图匹配方法[J]. 计算机应用研究, 2022, 39(2): 379-384.WANG Xiao-han, HE Zeng-yu, HU Wang-wu, et al. Map matching method for complex road sections via difference and subsequent points[J]. Application Research of Computers, 2022, 39(2): 379-384. (in Chinese) [28] TAYLOR G, BLEWITT G, STEUP D, et al. Road reduction filtering for GPS-GIS navigation[J]. Transactions in GIS, 2001, 5(3): 193-207. doi: 10.1111/1467-9671.00077 [29] CHEN D, DRIEMEL A, GUIBAS L J, et al. Approximate map matching with respect to the Fréchet distance[C]// WHITFORD A B. 2011 Proceedings of the Thirteenth Workshop on Algorithm Engineering and Experiments. Naples: Society for Industrial and Applied Mathematics, 2011: 75-83. [30] 上官伟, 袁重阳, 蔡伯根, 等. 北斗二代在西部低密度铁路中的应用[J]. 交通运输工程学报, 2016, 16(5): 132-141. doi: 10.19818/j.cnki.1671-1637.2016.05.015SHANGGUAN Wei, YUAN Chong-yang, CAI Bai-gen, et al. Application of BDS in western low-density railway lines[J]. Journal of Traffic and Transportation Engineering, 2016, 16(5): 132-141. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2016.05.015 [31] XU Qian, WANG Mei-ling, DU Zhi-fang, et al. A positioning algorithm of autonomous car based on map-matching and environmental perception[C]//IEEE. Proceedings of the 33rd Chinese Control Conference. New York: IEEE, 2014: 707-712. [32] HAN Yong-qian, ZHAO Dun-hui, ZHANG Xin-gang, et al. Map matching algorithm based on trajectory feature identification[C]//IEEE. 2021 40th Chinese Control Conference. New York: IEEE, 2021: 3657-3661. [33] BLAZQUEZ C A, VONDEROHE A P. Simple map-matching algorithm applied to intelligent winter maintenance vehicle data[J]. Transportation Research Record, 2005(1935): 68-76. [34] PEREIRA F C, COSTA H, PEREIRA N M. An off-line map-matching algorithm for incomplete mapdatabases[J]. European Transport Research Review, 2009, 1(3): 107-124. doi: 10.1007/s12544-009-0013-6 [35] LIU You-wen. Forecast map matching model for vehicle- borne navigation based on roadway character-istic[C]//IEEE. 2010 International Conference on Optoelectronics and Image Processing. New York: IEEE, 2010: 569-571. [36] VELAGA N R, QUDDUS M A, BRISTOW A L. Improving the performance of a topological map-matching algorithm through error detection and correction[J]. Journal of Intelligent Transportation Systems, 2012, 16(3): 147-158. doi: 10.1080/15472450.2012.691852 [37] 李殿茜, 王翌, 刘垒, 等. 一种地图匹配算法的设计与实现[J]. 导航定位与授时, 2017, 4(2): 31-34.LI Dian-xi, WANG Yi, LIU Lei, et al. The design and implementation of a map matching algorithm[J]. Navigation Positioning and Timing, 2017, 4(2): 31-34. (in Chinese) [38] QUDDUS M A, OCHIENG W Y, ZHAO Lin, et al. A general map matching algorithm for transport telematics applications[J]. GPS Solutions, 2003, 7(3): 157-167. doi: 10.1007/s10291-003-0069-z [39] VELAGA N R, QUDDUS M A, BRISTOW A L. Developing an enhanced weight-based topological map-matching algorithm for intelligent transport systems[J]. Transportation Research Part C: Emerging Technologies, 2009, 17(6): 672-683. doi: 10.1016/j.trc.2009.05.008 [40] YUAN Jing, ZHENG Yu, ZHANG Cheng-yang, et al. An interactive-voting based map matching algorithm[C]//IEEE. 2010 Eleventh International Conference on Mobile Data Management. New York: IEEE, 2010: 43-52. [41] QUDDUS M, WASHINGTON S. Shortest path and vehicle trajectory aided map-matching for low frequency GPS data[J]. Transportation Research Part C: Emerging Technologies, 2015, 55: 328-339. doi: 10.1016/j.trc.2015.02.017 [42] DU Zi-xue, LIU Bin-yan, XIA Qin. Map matching algorithm based on V2I technology[C]//IEEE. 2018 International Conference on Robots and Intelligent System. New York: IEEE, 2018: 137-140. [43] 张贺, 孙婉莹, 宋国平. 基于特征权重的地图匹配算法研究[J]. 中国新技术新产品, 2022, DOI: 10.13612/j.cnkicntp.2022.23.027.ZHANG He, SUN Wan-ying, SONG Guo-ping. Research on feature weight-based map matching algorithm[J]. China New Technology and New Products, 2022, DOI: 10.13612/j.cnkicntp.2022.23.027.(inChinese) [44] ZHANG Lun, ZHANG Meng, YANG Wen-chen, et al. Golden ratio genetic algorithm based approach for modelling and analysis of the capacity expansion of urban road traffic network[J]. Computational Intelligence and Neuroscience, 2015, 2015(1): 1-9. [45] CHEN Peng, TONG Rui, LU Guang-quan, et al. The α-reliable path problem in stochastic road networks with link correlations: a moment-matching-based path finding algorithm[J]. Expert Systems with Applications, 2018, 110: 20-32. doi: 10.1016/j.eswa.2018.05.022 [46] 吴刚, 邱煜晶, 王国仁. 基于隐马尔可夫模型和遗传算法的地图匹配算法[J]. 东北大学学报(自然科学版), 2017, 38(4): 472-475.WU Gang, QIU Yu-jing, WANG Guo-ren. Map matching algorithm based on hidden markov model and genetic algorithm[J]. Journal of Northeastern University (Natural Science), 2017, 38(4): 472-475. (in Chinese) [47] CHEHREGHAN A, ALI ABBASPOUR R. A geometric-based approach for road matching on multi-scale datasets using a genetic algorithm[J]. Cartography and Geographic Information Science, 2018, 45(3): 255-269. doi: 10.1080/15230406.2017.1324823 [48] SINGH S, SINGH J, SEHRA S S. Genetic-inspired map matching algorithm for real-time GPS trajectories[J]. Arabian Journal for Science and Engineering, 2020, 45(4): 2587-2603. doi: 10.1007/s13369-019-04247-1 [49] YIN Dan-dong, DU Shi-hong, WANG Shao-wen, et al. A direction-guided ant colony optimization method for extraction of urban road information from very-high-resolution images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(10): 4785-4794. doi: 10.1109/JSTARS.2015.2477097 [50] 巩现勇, 武芳, 姬存伟, 等. 道路网匹配的蚁群算法求解模型[J]. 武汉大学学报(信息科学版), 2014, 39(2): 191-195.GONG Xian-yong, WU Fang, JI Cun-wei, et al. Ant colony algorithm solution model for road network matching[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2): 191-195. (in Chinese) [51] GONG Yue-jiao, CHEN En, ZHANG Xing-lin, et al. AntMapper: an ant colony-based map matching approach for trajectory-based applications[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(2): 390-401. [52] LIU Ji-ping, XU Sheng-hua, ZHANG Fu-hao, et al. A hybrid genetic-ant colony optimization algorithm for the optimal path selection[J]. Intelligent Automation and Soft Computing, 2017, 23(2): 235-242. doi: 10.1080/10798587.2016.1196926 [53] FU Meng-yin, LI Jie, WANG Mei-ling. A hybrid map matching algorithm based on fuzzy comprehensive judgment[C]// IEEE. The 7th International IEEE Conference on Intelligent Transportation Systems. New York: IEEE, 2004: 613-617. [54] SYED S, CANNON M E. Fuzzy logic based-map matching algorithm for vehicle navigation system in urban canyons[C]// WELLS J K. Proceedings of the 2004 National Technical Meeting of the Institute of Navigation. Washington DC: Institute of Navigation, 2004: 982-993. [55] ZHANG Yong-qiang, GAO Yan-yan. A fuzzy logic map matching algorithm[C]//IEEE. 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery. New York: IEEE, 2008: 132-136. [56] 张涛, 杨殿阁, 李克强, 等. 车辆导航中带匹配度反馈的模糊地图匹配算法[J]. 清华大学学报: 自然科学版, 2009, 49(2): 277-280.ZHANG Tao, YANG Dian-ge, LI Ke-qiang, et al. Fuzzy map-matching algorithm with confidence feedback for vehicle navigation[J]. Journal of Tsinghua University: Science and Technology, 2009, 49(2): 277-280. (in Chinese) [57] YANG Yan-lan, YE Hua, FEI Shu-min. Integrated map-matching algorithm based on fuzzy logic and dead reckoning[C]//IEEE. 2010 International Conference on Control, Automation and Systems. New York: IEEE, 2010: 1139-1142. [58] NASSREDDINE G, ABDALLAH F, DENലUX T. Map matching algorithm using belief function theory[C]//IEEE. 2008 11th International Conference on Information Fusion. New York: IEEE, 2008: 1-8. [59] 胡林, 谷正气, 杨易, 等. 基于权值D-S证据理论的车辆导航地图匹配[J]. 中国公路学报, 2008, 21(2): 116-120.HU Lin, GU Zheng-qi, YANG Yi, et al. Map matching in vehicle navigation based on weighted DS evidence theory[J]. China Journal of Highway and Transport, 2008, 21(2): 116-120. (in Chinese) [60] 曹闻, 朱述龙, 彭煊, 等. 基于短时预测的地图匹配算法[J]. 计算机应用, 2010, 30(11): 2910-2913.CAO Wen, ZHU Shu-long, PENG Xuan, et al. Map matching algorithm based on short-term prediction[J]. Computer Applications, 2010, 30(11): 2910-2913. (in Chinese) [61] ZHAO Xiang-mo, CHENG Xin, ZHOU Jing-mei, et al. Advanced topological map matching algorithm based on D-S theory[J]. Arabian Journal for Science and Engineering, 2018, 43: 3863-3874. doi: 10.1007/s13369-017-2569-0 [62] YANG Feng-bao, WEI Hong, FENG Pei-pei. A hierarchical dempster-shafer evidence combination framework for urban area land cover classification[J]. Measurement, 2020, 151: 105916. doi: 10.1016/j.measurement.2018.09.058 [63] NIE Qing-hui, XIA Jing-xin, QIAN Zhen-dong, et al. Use of multisensor data in reliable short-term travel time forecasting for urban roads: Dempster-Shafer approach[J]. Transportation Research Record, 2015(2526): 61-69. [64] CAI Jian-nan, JEON J H, CAI Hu-bo, et al. Fusing heterogeneous information for underground utility map generation based on Dempster-Shafer theory[J]. Journal of Computing in Civil Engineering, 2020, 34(3): 1-14. [65] 杨易, 谷正气, 胡林, 等. 基于概率决策的车辆导航系统地图匹配算法[J]. 汽车工程, 2006, 28(10): 897-901.YANG Yi, GU Zheng-qi, HU Lin, et al. Map matching algorithm for vehicle navigation system based on probability decision rule[J]. Automotive Engineering, 2006, 28(10): 897-901. (in Chinese) [66] ZHAO Shuai-dong, ZHANG Kui-lin. A distributionally robust optimization approach to reconstructing missing locations and paths using high-frequency trajectory data[J]. Transportation Research Part C: Emerging Technologies, 2019, 102: 316-335. doi: 10.1016/j.trc.2019.03.012 [67] JABBOUR M, BONNIFAIT P, CHERFAOUI V. Map-matching integrity using multihypothesis road-tracking[J]. Journal of Intelligent Transportation Systems, 2008, 12(4): 189-201. doi: 10.1080/15472450802448179 [68] CHEN Bi-yu, YUAN Hui, LI Qing-quan, et al. Map-matching algorithm for large-scale low-frequency floating car data[J]. International Journal of Geographical Information Science, 2014, 28(1): 22-38. doi: 10.1080/13658816.2013.816427 [69] ZHANG Qing-xiang, WANG Mei-ling, YUE Yu-feng. Robust semantic map matching algorithm based on probabilistic registration model[C]//IEEE. 2021 IEEE International Conference on Robotics and Automation. New York: IEEE, 2021: 5289-5295. [70] OBRADOVIC D, LENZ H, SCHUPFNER M. Fusion of map and sensor data in a modern car navigation system[J]. The Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, 2006, 45(1/2): 111-122. [71] CHU H J, TSAI G J, CHIANG K W, et al. GPS/MEMS INS data fusion and map matching in urban areas[J]. Sensors, 2013, 13(9): 11280-11288. doi: 10.3390/s130911280 [72] WANG Hong-yu, LI Jin, HOU Zhen-shan, et al. Research on parallelized real-time map matching algorithm for massive GPS data[J]. Cluster Computing, 2017, 20: 1123-1134. doi: 10.1007/s10586-017-0869-5 [73] ASGHAR R, GARZÓN M, LUSSEREAU J, et al. Vehicle localization based on visual lane marking and topological map matching[C]//IEEE. 2020 IEEE International Conference on Robotics and Automation. New York: IEEE, 2020: 258-264. [74] 王东京, 刘继涛, 俞东进. 电动自行车轨迹简化与自适应地图匹配算法[J]. 软件学报, 2023, 34(8): 3793-3820.WANG Dong-jing, LIU Ji-tao, YU Dong-jin. Trajectory simplification and adaptive map matching algorithm for electric bicycle[J]. Journal of Software, 2023, 34(8): 3793-3820. (in Chinese) [75] XU Hao, LIU Hong-chao, TAN C W, et al. Development and application of an enhanced Kalman filter and global positioning system error-correction approach for improved map-matching[J]. Journal of Intelligent Transportation Systems, 2010, 14(1): 27-36. doi: 10.1080/15472450903386013 [76] YUAN Yu-shan, LYU Jin-yang. Research on train positioning system based on map matching and multi-information fusion[C]// IEEE. 2020 IEEE 6th International Conference on Computer and Communications. New York: IEEE, 2020: 2271-2275. [77] YU Bao-guo, JIA Hao-nan, WANG Xin-jian, et al. An indoor map matching algorithm based on improved particle filter[C]//IEEE. 2022 IEEE 10th International Conference on Information, Communication and Networks. New York: IEEE, 2022: 158-163. [78] 赖国良, 胡钊政, 周哲, 等. 基于语义似然与高精度地图匹配的智能车辆同时定位与检测[J]. 上海交通大学学报, 2023. DOI: 10.16183/j.cnki.jsjtu.2023.086.LAI Guo-liang, HU Zhao-zheng, ZHOU Zhe, et al. Simultaneous detection and localization for intelligent vehicles from HD map matchingwith semantic likelihood model[J]. Journal of Shanghai Jiao Tong University, 2023, DOI: 10.16183/j.cnki.jsjtu.2023.086.(inChinese) [79] RAO Wen-ming, WU Yao-jan, XIA Jing-xin, et al. Origin-destination pattern estimation based on trajectory reconstruction using automatic license plate recognition data[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 29-46. doi: 10.1016/j.trc.2018.07.002 [80] YANG Jian-hao, SUN Jian. Vehicle path reconstruction using automatic vehicle identification data: an integrated particle filter and path flow estimator[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 107-126. doi: 10.1016/j.trc.2015.07.003 [81] FENG Yu, SUN Jian, CHEN Peng. Vehicle trajectory reconstruction using automatic vehicle identification and traffic count data[J]. Journal of Advanced Transportation, 2015, 49(2): 174-194. doi: 10.1002/atr.1260 [82] RAYMOND R, MORIMURA T, OSOGAMI T, et al. Map matching with hidden Markov model on sampled road network[C]//IEEE. Proceedings of the 21st International Conference on Pattern Recognition. New York: IEEE, 2012: 2242-2245. [83] GOH C Y, DAUWELS J, MITROVIC N, et al. Online map-matching based on hidden markov model for real-time traffic sensing applications[C]//IEEE. 2012 15th International IEEE Conference on Intelligent Transportation Systems. New York: IEEE, 2012: 776-781. [84] OSOGAMI T, RAYMOND R. Map matching with inverse reinforcement learning[C]//ROSSI F. Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence. Beijing: International Joint Conferences on Artificial Intelligence, 2013: 2547-2553. [85] SMAILI C, NAJJAR M E B E, CHARPILLET F. A hybrid Bayesian framework for map matching: formulation using switching kalman filter[J]. Journal of Intelligent and Robotic Systems, 2014, 74(3/4): 725-743. [86] KOLLER H, WIDHALM P, DRAGASCHNIG M, et al. Fast hidden Markov model map-matching for sparse and noisy trajectories[C]//IEEE. 2015 IEEE 18th International Conference on Intelligent Transportation Systems. New York: IEEE, 2015: 2557-2561. [87] MOHAMED R, ALY H, YOUSSEF M. Accurate real-time map matching for challenging environments[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 18(4): 847-857. [88] LUO An, CHEN Sheng-hua, XU Bin. Enhanced map-matching algorithm with a hidden Markov model for mobile phone positioning[J]. ISPRS International Journal of Geo-Information, 2017, 6(11): 327. doi: 10.3390/ijgi6110327 [89] YANG Can, GIDOFALVI G. Fast map matching, an algorithm integrating hidden Markov model with precomputation[J]. International Journal of Geographical Information Science, 2018, 32(3): 547-570. doi: 10.1080/13658816.2017.1400548 [90] QI Hui, DI Xiao-qiang, LI Jin-qing. Map-matching algorithm based on the junction decision domain and the hidden Markov model[J]. PLoS ONE, 2019, 14(5): 1-20. [91] LI Hai-jun, CHEN Zhan-fang, CUI Guang-cai, et al. A fast map matching algorithm based on topological relation of road network[C]//IEEE. 2019 International Conference on Machine Learning, Big Data and Business Intelligence. New York: IEEE, 2019: 14-18. [92] DOGRAMADZI M, KHAN A. Accelerated map matching for GPS trajectories[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(5): 4593-4602. [93] 袁祎, 陈光武. 基于改进HMM的车辆轨迹匹配方法研究(英文)[J]. 计量科学与仪器, 2024, 15(2): 235-243.YUAN Yi, CHEN Guang-wu. Research on vehicle trajectory matching method based on improved HMM[J]. Journal of Measurement Science and Instrumentation, 2024, 15(2): 235-243. (in Chinese) [94] LOU Yin, ZHANG Cheng-yang, ZHENG Yu, et al. Map-matching for low-sampling-rate GPS trajectories[C]//ACM. Proceedings of the 17th ACM Sigspatial International Conference on Advances in Geographic Information Systems. New York: ACM, 2009: 352-361. [95] CAO Qi, DENG Yue, REN Gang, et al. Jointly estimating the most likely driving paths and destination locations with incomplete vehicular trajectory data[J]. Transportation Research Part C: Emerging Technologies, 2023, 155: 1-27. [96] CAO Qi, REN Gang, LI Da-wei, et al. Map matching for sparse automatic vehicle identification data[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(7): 6495-6508. [97] JIANG Lin-li, CHEN Chao-xiong, CHEN Chao, et al. From driving trajectories to driving paths: a survey on map-matching algorithms[J]. CCF Transactions on Pervasive Computing and Interaction, 2022, 4(3): 252-267. doi: 10.1007/s42486-022-00101-w [98] 苏海滨, 王光政, 王继东. 基于模糊神经网络的地图匹配算法[J]. 北京科技大学学报, 2012, 34(1): 43-47.SU Hai-bin, WANG Guang-zheng, WANG Ji-dong. Map matching algorithm based on fuzzy neural networks[J]. Journal of University of Science and Technology Beijing, 2012, 34(1): 43-47. (in Chinese) [99] HASHEMI M, KARIMI H A. A machine learning approach to improve the accuracy of GPS-based map-matching algorithms[C]//IEEE. 2016 IEEE 17th International Conference on Information Reuse and Integration. New York: IEEE, 2016: 77-86. [100] ZHAO Kai, FENG Jie, XU Zhao, et al. Deep MM: deep learning based map matching with data augmentation[C]//ACM. Proceedings of the 27th ACM Sigspatial International Conference on Advances in Geographic Information Systems. New York: ACM, 2019: 452-455. [101] SHEN Zhi-hao, DU Wan, ZHAO Xi, et al. DMM: fast map matching for cellular data[C]//ACM. Proceedings of the 26th Annual International Conference on Mobile Computing and Networking. New York: ACM, 2020: 1-14. [102] JIN Zhi-xiong, KIM J, YEO H, et al. Transformer-based map-matching model with limited labeled data using transfer-learning approach[J]. Transportation Research Part C: Emerging Technologies, 2022, 140: 1-25. [103] QIU Shu-han, QIN Guo-yang, WONG M, et al. Routes former: a sequence-based route choice transformer for efficient path inference from sparse trajectories[J]. Transportation Research Part C: Emerging Technologies, 2024, 162: 1-38. [104] WEI Hua, CHEN Cha-cha, LIU Chang, et al. Learning to simulate on sparse trajectory data[C]//DONG Yu-xiao. 2021 European Conference on Machine Learning and Knowledge Discovery in Databases: Applied Data Science Track. Berlin: Springer, 2021: 530-545. [105] ZHENG Yu, XIE Xing, MA Wei-ying. GeoLife: a collaborative social networking service among user, location and trajectory[J]. IEEE Data Engineering Bulletin, 2010, 33(2): 32-39. [106] YUAN Jing, ZHENG Yu, ZHANG Cheng-yang, et al. T-drive: driving directions based on taxi trajectories[C]//ACM. Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2010: 99-108. [107] ETEMAD M, SOARES JÚNIOR A, MATWIN S. Predicting transportation modes of gps trajectories using feature engineering and noise removal[C]//Canadian Society for Intelligent Research. 2018 Canadian Conference on Artificial Intelligence. Berlin: Springer, 2018: 259-264. [108] ABDELAZIZ N, EL-RABBANY A. Deep learning-aided inertial/visual/lidar integration for GNSS-challenging environments[J]. Sensors, 2023, 23(13): 1-20. doi: 10.1109/JSEN.2023.3287172 [109] ASRAF O, SHAMA F, KLEIN I. PDRNet: a deep-learning pedestrian dead reckoning framework[J]. IEEE Sensors Journal, 2021, 22(6): 4932-4939. [110] DELMERICO J, CIESLEWSKI T, REBECQ H, et al. Are we ready for autonomous drone racing? The UZH-FPV drone racing dataset[C]//IEEE. 2019 IEEE International Conference on Robotics and Automation. New York: IEEE, 2019: 6713-6719. [111] SHI Xue-song, LI Dong-jiang, ZHAO Peng-peng, et al. Are we ready for service robots? The openloris-scene datasets for lifelong slam[C]//IEEE. 2020 IEEE International Conference on Robotics and Automation. New York: IEEE, 2020: 3139-3145. [112] MADDERN W, PASCOE G, LINEGAR C, et al. 1 year, 1000 km: the Oxford robotcar dataset[J]. The International Journal of Robotics Research, 2017, 36(1): 3-15. doi: 10.1177/0278364916679498 [113] RAMEZANI M, WANG Y, CAMURRI M, et al. The newer college dataset: handheld lidar, inertial and vision with ground truth[C]//IEEE. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. New York: IEEE, 2020: 4353-4360. [114] BI Jing-xue, WANG Yun-jia, YU Bao-guo, et al. Supplementary open dataset for WiFi indoor localization based on received signal strength[J]. Satellite Navigation, 2022, 3(1): 1-15. [115] 吴欢欢, 周建平, 许燕, 等. RFID发展及其应用综述[J]. 计算机应用与软件, 2013, 30(12): 203-206.WU Huan-huan, ZHOU Jian-ping, XU Yan, et al. A comprehensive review on RFID development and ITS application[J]. Computer Applications and Software, 2013, 30(12): 203-206. (in Chinese) [116] NGUYEN T M, YUAN Sheng-hai, CAO Mu-qing, et al. NTU VIRAL: a visual-inertial-ranging-lidar dataset, from an aerial vehicle viewpoint[J]. The International Journal of Robotics Research, 2022, 41(3): 270-280. [117] MOONEY P, MINGHINI M. A review of OpenStreetMap data[J]. Mapping and the Citizen Sensor, 2017, DOI: 10.5334/bbf.c. [118] ZAMIR A R, SHAH M. Accurate image localization based on google maps street view[C]//BARROW H G. 11th European Conference on Computer Vision. Berlin: Springer, 2010: 255-268. [119] 王昭雨, 庄惟敏. 基于图像深度学习的街区更新后评估方法研究——以北京什刹海街区为例[J]. 新建筑, 2022(3): 5-8.WANG Zhao-yu, ZHUANG Wei-min. Research on block renewal post occupancy evaluation methods based on image deep learning: a case study of Shichahai in Beijing[J]. New Architecture, 2022(3): 5-8. (in Chinese) [120] 李力, 张婧, 瓦希德·穆萨维, 等. 大数据驱动的城市更新设计方法初探[J]. 新建筑, 2021(2): 37-41.LI Li, ZHANG Jing, MOOSAVI V, et al. A preliminary study of big data driven urban renewal design[J]. New Architecture, 2021(2): 37-41. (in Chinese) [121] 陈滨, 王平, 施文灶, 等. GPS轨迹数据的综合地图匹配算法研究[J]. 电子科技, 2014, 27(12): 20-23.CHEN Bin, WANG Ping, SHI Wen-zao, et al. An integrated map-matching algorithm based on GPS[J]. Electronic Science and Technology, 2014, 27(12): 20-23. (in Chinese) [122] HASHEMI M, KARIMI H A. A critical review of real-time map-matching algorithms: current issues and future directions[J]. Computers, Environment and Urban Systems, 2014, 48: 153-165. [123] GAN Nian-fei, ZHANG Miao-miao, ZHOU Bing, et al. Spatio-temporal heuristic method: a trajectory planning for automatic parking considering obstacle behavior[J]. Journal of Intelligent and Connected Vehicles, 2022, 5(3): 177-187. [124] ZHAO Jian-sen, MA Xin, YANG Bing, et al. Global path planning of unmanned vehicle based on fusion of A* algorithm and Voronoi field[J]. Journal of Intelligent and Connected Vehicles, 2022, 5(3): 250-259. [125] 彭涛, 许庆, 陈强, 等. 异构载货车辆队列高速换道分布式反馈线性化控制[J]. 汽车安全与节能学报, 2022, 13(3): 473-481.PENG Tao, XU Qing, CHEN Qiang, et al. Distributed feedback linear control for heterogeneous freight vehicle platoon on highway[J]. Journal of Automotive Safety and Energy, 2022, 13(3): 473-481. (in Chinese) [126] DABIRI A, KULCSÁR B. Incident indicators for freeway traffic flow models[J]. Communications in Transportation Research, 2022, 2: 1-9. [127] 陈华伟, 邵毅明, 敖谷昌, 等. 面向在线地图的GCN-LSTM神经网络速度预测[J]. 交通运输工程学报, 2021, 21(4): 183-196. doi: 10.19818/j.cnki.1671-1637.2021.04.014CHEN Hua-wei, SHAO Yi-ming, AO Gu-chang, et al. Speed prediction by online map-based GCN-LSTM neural network[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 183-196. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.04.014 [128] TSCHARAKTSCHIEW S, REIMANN F. Less workplace parking with fully autonomous vehicles?[J]. Journal of Intelligent and Connected Vehicles, 2022, 5(3): 283-301. [129] ZHANG Dong-qing, DONG Yu-cheng, GUO Zhao-xia. A turning point-based offline map matching algorithm for urban road networks[J]. Information Sciences, 2021, 565: 32-45. [130] LYU Cheng, WU Xin-hua, LIU Yang, et al. A partial-Fréchet- distance-based framework for bus route identification[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(7): 9275-9280. [131] 李军, 唐爽, 黄志祥, 等. 融合稳定性的高速无人驾驶车辆纵横向协调控制方法[J]. 交通运输工程学报, 2020, 20(2): 205-218. doi: 10.19818/j.cnki.1671-1637.2020.02.017LI Jun, TANG Shuang, HUANG Zhi-xiang, et al. Longitudinal and lateral coordination control method of high- speed unmanned vehicles with integrated stability[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 205-218. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.02.017