留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

智能交通场景下的地图匹配技术综述

李颖 费怡瑄 安毅生 刘洋

李颖, 费怡瑄, 安毅生, 刘洋. 智能交通场景下的地图匹配技术综述[J]. 交通运输工程学报, 2024, 24(5): 301-332. doi: 10.19818/j.cnki.1671-1637.2024.05.020
引用本文: 李颖, 费怡瑄, 安毅生, 刘洋. 智能交通场景下的地图匹配技术综述[J]. 交通运输工程学报, 2024, 24(5): 301-332. doi: 10.19818/j.cnki.1671-1637.2024.05.020
LI Ying, FEI Yi-xuan, AN Yi-sheng, LIU Yang. Review on map matching technologies in intelligent transportation scenarios[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 301-332. doi: 10.19818/j.cnki.1671-1637.2024.05.020
Citation: LI Ying, FEI Yi-xuan, AN Yi-sheng, LIU Yang. Review on map matching technologies in intelligent transportation scenarios[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 301-332. doi: 10.19818/j.cnki.1671-1637.2024.05.020

智能交通场景下的地图匹配技术综述

doi: 10.19818/j.cnki.1671-1637.2024.05.020
基金项目: 

国家重点研发计划 2021YFB1600100

陕西省重点研发计划 2024GX-YBXM-002

国家自然科学基金项目 52002031

国家自然科学基金项目 52220105001

国家自然科学基金项目 52221005

详细信息
    作者简介:

    李颖(1986-),女,陕西咸阳人,长安大学副教授,工学博士,从事大数据驱动下的新型智能交通系统研究

    通讯作者:

    刘洋(1991-),男,山东淄博人,清华大学助理研究员,工学博士

  • 中图分类号: U495

Review on map matching technologies in intelligent transportation scenarios

Funds: 

National Key Research and Development Program of China 2021YFB1600100

Key Research and Development Program of Shaanxi Province 2024GX-YBXM-002

National Natural Science Foundation of China 52002031

National Natural Science Foundation of China 52220105001

National Natural Science Foundation of China 52221005

More Information
  • 摘要: 为推动地图匹配技术的发展,从匹配方法角度深入研究地图匹配算法并分类阐述原理、特点及应用场景,全面介绍了现有地图匹配数据集,总结了地图匹配在智能交通领域的应用场景,提出了地图匹配技术未来的研究方向。研究结果表明:GPS数据的准确性和完整性可能会因多种因素而受到影响,导致轨迹数据变得稀疏,稀疏的GPS轨迹会导致车辆的实际行驶路径无法被准确还原,增加地图匹配的不确定性;车道级匹配需求因智能交通系统的发展、自动驾驶技术的兴起和城市交通网络的日益复杂等因素而日益迫切;未来地图匹配技术的研究方向主要集中在2个方面;对于稀疏轨迹的地图匹配技术,需聚焦数据插值技术,提高轨迹的连续性,运用多传感器数据融合技术,增强定位的准确性和可靠性,应用深度学习技术,提高匹配算法的智能水平;对于车道级的地图匹配技术,重点在于整合高精度地图数据和实时交通信息,提供更准确的道路特征和交通状况信息,优化深度学习模型,识别复杂的交通模式和道路特征,开发适应动态交通环境的算法,提高算法的稳定性和适应性;这些研究方向将有助于提高地图匹配技术的准确性、可靠性和实时性,为智能交通系统和自动驾驶技术提供更有力的支持。

     

  • 图  1  地图匹配框架

    Figure  1.  Framework of map matching

    图  2  点到点匹配

    Figure  2.  Point-to-point matching

    图  3  点到线匹配

    Figure  3.  Point-to-line matching

    图  4  线到线匹配

    Figure  4.  Line-to-line matching

    图  5  基于几何和基于简单拓扑关系的匹配算法对比

    Figure  5.  Comparison between geometry-based and simple topology relation-based matching algorithms

    图  6  加权拓扑关系匹配算法

    Figure  6.  Weighted topological relation matching algorithm

    图  7  基于遗传算法的地图匹配算法流程

    Figure  7.  Process of map matching algorithm based on genetic algorithm

    图  8  基于蚁群算法的地图匹配算法流程

    Figure  8.  Process of map matching algorithm based on ant colony algorithm

    图  9  基于模糊逻辑的地图匹配算法流程

    Figure  9.  Process of map matching algorithm based on fuzzy logic

    图  10  基于D-S证据理论的地图匹配算法流程

    Figure  10.  Process of map matching algorithm based on D-S evidence theory

    图  11  传统基于概率决策规则的地图匹配算法

    Figure  11.  Traditional map matching algorithm based on probability decision rule

    图  12  基于卡尔曼滤波器的地图匹配算法流程

    Figure  12.  Process of map matching algorithm based on Kalman filter

    图  13  基于粒子滤波器的地图匹配算法流程

    Figure  13.  Process of map matching algorithm based on particle filter

    图  14  HMM的匹配过程

    Figure  14.  Matching process of HMM

    图  15  基于深度学习的地图匹配算法流程

    Figure  15.  Process of map matching algorithm based on deep learning

    图  16  车载导航

    Figure  16.  In-vehicle navigation

    图  17  物流配送

    Figure  17.  Logistics distribution

    图  18  环境监测

    Figure  18.  Environmental monitoring

    图  19  无人驾驶

    Figure  19.  Autonomous driving

    表  1  各类地图匹配算法简介

    Table  1.   Introduction of various map matching algorithms

    算法 匹配方法 文献 特点 适用场景
    传统地图匹配算法 几何 [13] 简单高效,易于实现,对噪声敏感 适用于道路网络较为简单或者对实时性要求较高的情况
    拓扑 [14] 快速确定候选路段,实时性好,受初始匹配结果影响较大,容错性差 适用于道路网络结构复杂,例如在城市环境中,平行道路和频繁的路段变更
    基于优化算法的地图匹配算法 遗传算法 [15] 全局最优搜索能力,处理复杂问题,容错性,适应性强 适合于需要在多个匹配结果中寻找最优解的复杂道路网络,以及需要快速响应的实时地图匹配应用
    蚁群算法 [16] 全局最优解,自适应和局部搜索策略 适用于解决空间数据集中和融合中的关键技术问题,如同名实体匹配,复杂的道路网匹配问题,实时匹配
    基于逻辑和推理的地图匹配算法 模糊逻辑 [17] 处理不确定性和模糊性,基于规则的推理,集成多种数据源 适用于复杂的交通网络环境,尤其是在城市密集道路网络中,以及存在不确定性的匹配问题
    D-S证据理论 [18] 处理不确定性和证据冲突,鲁棒性 适用于城市复杂路网,车辆监控和管理系统
    基于概率统计的地图匹配算法 概率决策 [19] 考虑车辆定位的不确定性,有效减少待匹配的路段数量,对置信区域设置敏感 适用于简单路网环境,定位误差较小的情况,通常需要与其他地图匹配技术结合
    滤波器 [20] 考虑传感器误差和地图误差,较高的可信度,效率较低 适用于对定位精度要求较高的场景,如城市复杂道路环境中的车辆导航系统、自动驾驶汽车、无人机导航等
    HMM [21] 考虑测量噪声和道路布局,处理时间序列数据,动态规划优化 适合于处理不准确和稀疏的GPS数据
    扩展HMM [22] 考虑实时移动方向,综合空间、时间和方向特征,减少计算成本 适用于道路网络复杂,低采样率GPS轨迹,需要更精细匹配结果的场景
    基于深度学习的地图匹配算法 [23] 能够处理低质量(噪声、低频率、非均匀采样)的GPS轨迹数据,利用深度学习模型提高匹配质量 适合于需要处理大量复杂轨迹数据的情况,尤其是在数据质量较差时
    下载: 导出CSV

    表  2  基于HMM的地图匹配算法比较

    Table  2.   Comparison of map matching algorithms based on HMM

    算法 具体方法 输入信息 改进
    HMM[21] HMM+Viterbi 时间戳的纬度、经度对,道路网络图 通过手动匹配或已知的行驶路线来验证和校正算法
    理想HMM[82] 简化的HMM框架+Viterbi 时间戳的纬度、经度对,道路网络图 简化了状态转移概率,使其适应理想HMM框架,以避免在寻找最可能路径时的缺陷
    OHMM[83] HMM+VSW+SVW+概率评分机制+Viterbi 车辆的经度、纬度、速度和时间戳,道路网络;其他传感器数据和拓扑信息 利用支持向量机(Support Vector Machine, SVM)来学习转移概率函数,而不是事先选择模型并估计其参数
    基于IRL的HMM[84] HMM+IRL+Viterbi+Dijkstra+最大熵IRL GPS数据点,真实路线,道路网络 考虑了转弯次数作为评估路线可能性的指标
    混合贝叶斯框架匹配算法[85] 卡尔曼滤波器+HMM+链式状态空间表示 传感器数据,差分全球定位系统(DifferentialGlobal Position System, DGPS)接收器提供的GPS位置数据,道路网络 引入了链式状态空间表示,允许使用精确的线性方程进行多传感器数据融合,提出了一个段选择策略,用于假设跟踪
    快速HMM[86] HMM+Dijkstra+懒惰评估 GPS数据点,道路网络,搜索半径 经过优化以减少计算复杂性,特别是在处理稀疏和嘈杂的GPS轨迹数据时
    SnapNet[87] 一系列过滤器+插值+增量式HMM+Viterbi 由纬度、经度和误差估计值组成的位置信息,数字地图 运用道路转换启发式规则,处理虚假转换,减少不必要的道路切换
    基于HMM的增强模型[88] HMM+Viterbi GPS数据和手机定位数据,道路网络,几何数据,精炼的四叉树数据 对于状态空间的定义,使用四叉树网格结构化道路网络,以减少计算复杂性
    FMM[89] 预计算+HMM+Viterbi+空间索引技术+线性引用算法 位置、时间戳、速度、方向和加速度的GPS观测数据,道路网络 通过预计算和使用哈希表搜索来替换重复的路由查询
    基于路口决策域和HMM[90] HMM+路口决策域模型+Viterbi 车辆的实时位置信息,道路网络 定义路口决策域,综合道路宽、路口角、GPS及路网精度,划定区域,指导车辆GPS位置匹配,减少误差
    基于拓扑关系的快速匹配算法[91] HMM+A*算法+Viterbi 车辆的纬度、经度、时间、速度、方向角度,道路网络数据 预计算每个区域包含的道路段,提高了查找候选道路段的效率,改进了A*算法的启发式搜索效率,减少了计算量
    加速HMM[92] HMM+道路网络分割+空间感知启发式方法+Viterbi 原始GPS点,道路网络 通过道路网络分割和空间感知启发式方法显著加速转移概率计算
    IHMM[93] 误差置信椭圆+IHMM+Viterbi 原始GPS点,道路网络 基于方向和距离权重的发射概率计算,以及考虑道路段曲率的状态转移概率计算
    下载: 导出CSV

    表  3  基于深度学习的地图匹配算法比较

    Table  3.   Comparison of map matching algorithms based on deep learning

    模型 数据集信息 采样间隔/s 神经网络的输入 神经网络的输出
    FNN[98] 郑州城市区域测试车辆GPS轨迹 4 投影距离以及方位角之间的差异 地图匹配度
    ANN[99] 芝加哥5条道路区域内的GPS轨迹,包含13 204个GPS点 速度、水平精度因子和常数 GPS点的水平偏移量,包括长度和方向
    基于Seq2Seq学习框架,结合注意力机制[100] 北京地区车辆GPS轨迹包含12 436名用户的1 336 567条 11 原始轨迹数据和道路网络信息 匹配后的轨迹和校准后的轨迹
    DMM框架[101] 伦敦198条车辆GPS轨迹,总长度为1 701 km,涉及2 848个不同的蜂窝基站 5个等级 蜂窝基站序列,包含了基站的标识符(ID)和时间戳以及道路网络地图 道路轨迹和匹配精度
    Transformer[102] 韩国首尔江南区运营的出租车上安装的DTG GPS轨迹 点级或线级路线
    RoutesFormer[103] 上海8 407辆出租车的GPS轨迹 60、180、300、420 不连续的路径(道路链接)、已行驶的路径 最有可能的下一个链接、完整推断路径
    ImIn-GAIL框架[104] 杭州和洛杉矶地区GPS车辆轨迹 0.1 稀疏驾驶轨迹、驾驶状态、驾驶行为 密集驾驶轨迹、模仿性能、插值性能
    L2MM[23] 波尔图市200 000条GPS轨迹、重庆市100 000条GPS轨迹 15 低质量GPS轨迹、高质量GPS轨迹、道路网络数据 映射后的轨迹、轨迹表示、识别的模式
    下载: 导出CSV

    表  4  地图匹配数据集

    Table  4.   Map matching datasets

    数据集类型 数据集名称 是否公开 公开数据集 优点 缺点
    GPS数据集 GPS[105-107] 部分公开 GeoLife GPS Trajectories、T-Drive Taxi Trajectories、SynMob等 全球范围覆盖,精度较高 室内效果差,信号易受遮挡,能耗高
    传感器数据集 AVI[77-78, 95] 私有 精度高 数据稀疏
    INS[108] 部分公开 多IMU车载GNSS/INS数据集、KITTI等 抗干扰能力强,高频采样,短时间内精度较高 长时间使用会产生误差累积,成本较高
    PDR[109] 私有 无需外部信号,可与手机传感器结合 误差会随步数增加而累积
    SLAM[110-113] 部分公开 UZH-FPV Drone Racing、OpenLORIS-Scene、OxfordRobotCar、Newer College等 实时性好,精度较高 容易受动态障碍物和视线遮挡影响
    无线网络数据集 WiFi[114] 部分公开 SODIndoorLoc、RSSI、UJIIndoorLoc等 成本低,覆盖范围广 精度较低,受环境因素干扰大
    蓝牙 部分公开 成本低,功耗低 受环境因素干扰大
    RFID 私有 精度较高,功耗低 成本高
    UWB[116] 部分公开 精度高,抗干扰能力强,实时定位效果好 成本高
    地图数据集 OSM[117] 公开 OpenStreetMap 开源,全球覆盖,数据多样 数据精度不均,信息不完整,格式复杂
    街景图像[118-120] 部分公开 Google地图、百度地图、高德地图等 提供360°全景视角 隐私问题,存储成本高
    下载: 导出CSV
  • [1] 于娟, 杨琼, 鲁剑锋, 等. 高级地图匹配算法: 研究现状和趋势[J]. 电子学报, 2021, 49(9): 1818-1829.

    YU Juan, YANG Qiong, LU Jian-feng, et al. Advanced map matching algorithms: a survey and trends[J]. Acta Electonica Sinica, 2021, 49(9): 1818-1829. (in Chinese)
    [2] KUBICKA M, CELA A, MOUNIER H, et al. Comparative study and application-oriented classification of vehicular map-matching methods[J]. IEEE Intelligent Transportation Systems Magazine, 2018, 10(2): 150-166. doi: 10.1109/MITS.2018.2806630
    [3] 孙健, 张颖, 张纯. 基于驾驶人路径选择偏好的OD行程时间预测方法[J]. 交通运输工程学报, 2016, 16(2): 143-149. doi: 10.19818/j.cnki.1671-1637.2016.02.017

    SUN Jian, ZHANG Ying, ZHANG Chun. Prediction method of OD travel time based on driver's route choice preference[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 143-149. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2016.02.017
    [4] HUANG Zhen-feng, QIAO Shao-jie, HAN Nan, et al. Survey on vehicle map matching techniques[J]. CAAI Transactions on Intelligence Technology, 2021, 6(1): 55-71. doi: 10.1049/cit2.12030
    [5] NIKOLIC M, JOVIC J. Implementation of generic algorithm in map-matching model[J]. Expert Systems with Applications, 2017, 72: 283-292. doi: 10.1016/j.eswa.2016.10.061
    [6] 廖律超, 蒋新华, 林铭榛, 等. 基于交通轨迹数据挖掘的道路限速信息识别方法[J]. 交通运输工程学报, 2015, 15(5): 118-126. doi: 10.19818/j.cnki.1671-1637.2015.05.015

    LIAO Lyu-chao, JIANG Xin-hua, LIN Ming-zhen, et al. Recognition method of road speed limit information based on data mining of traffic trajectory[J]. Journal of Traffic and Transportation Engineering, 2015, 15(5): 118-126. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2015.05.015
    [7] SIRI E, SIRI S, SACONE S. A topology-based bounded rationality day-to-day traffic assignment model[J]. Communications in Transportation Research, 2022, 2: 1-16.
    [8] ZHANG Wen-wei, ZHAO Hui, XU Min. Optimal operating strategy of short turning lines for the battery electric bus system[J]. Communications in Transportation Research, 2021, 1: 1-12.
    [9] 张平, 陈一凡, 江书真, 等. 高速公路上自动超车过程的轨迹规划与跟踪控制[J]. 汽车安全与节能学报, 2022, 13(3): 463-472.

    ZHANG Ping, CHEN Yi-fan, JIANG Shu-zhen, et al. Trajectory planning and tracking control of automatic overtaking process on highway[J]. Journal of Automotive Safety and Energy, 2022, 13(3): 463-472. (in Chinese)
    [10] 孙智威, 裴晓飞, 刘一平, 等. 无人驾驶清扫车的路径跟踪及远程控制[J]. 汽车安全与节能学报, 2022, 13(4): 729-737.

    SUN Zhi-wei, PEI Xiao-fei, LIU Yi-ping, et al. Path tracking and remote control of driverless sweeper[J]. Journal of Automotive Safety and Energy, 2022, 13(4): 729-737. (in Chinese)
    [11] LIU Zhi-yuan, LIU Yang, LYU Cheng, et al. Building personalized transportation model for online taxi-hailing demand prediction[J]. IEEE Transactions on Cybernetics, 2020, 51(9): 4602-4610.
    [12] CHAO Ping-fu, XU Ye-hong, HUA Wen, et al. A survey on map-matching algorithms[C]//BOROVICA-GAJIC R. Databases Theory and Applications: 31st Australasian Database Conference. Berlin: Springer, 2020: 121-133.
    [13] BERNSTEIN D, KORNHAUSER A. An introduction to map matching for personal navigation assistants[J]. New Jersey Institute of Technology, 1998, DOI: 10.1001/archopht.122.7.1082-b.
    [14] MAHPOUR A, FORSI H, VAFAEENEJAD A, et al. An improvement on the topological map matching algorithm at junctions: a heuristic approach[J]. International Journal of Transportation Engineering, 2022, 9(4): 749-761.
    [15] 谷远利, 陆文琦, 邵壮壮. 基于多目标遗传算法的浮动车地图匹配方法[J]. 北京工业大学学报, 2019, 45(6): 585-592.

    GU Yuan-li, LU Wen-qi, SHAO Zhuang-zhuang. Multi-criteria genetic algorithm-based map-matching method for floating car data[J]. Journal of Beijing University of Technology, 2019, 45(6): 585-592. (in Chinese)
    [16] 王跃钢, 文超斌, 左朝阳, 等. 自适应混沌蚁群径向分析算法求解重力辅助导航匹配问题[J]. 物理学报, 2014, 8(63): 454-459.

    WANG Yue-gang, WEN Chao-bin, ZUO Chao-yang, et al. Adaptive chaotic ant colony radial analysis algorithm for solving gravity-assist navigation matching problem[J]. Acta Physica Sinica, 2014, 8(63): 454-459. (in Chinese)
    [17] QUDDUS M A, NOLAND R B, OCHIENG W Y. A high accuracy fuzzy logic based map matching algorithm for road transport[J]. Journal of Intelligent Transportation Systems, 2006, 10(3): 103-115. doi: 10.1080/15472450600793560
    [18] 谷正气, 胡林, 黄晶, 等. 基于改进D-S证据理论的车辆导航地图匹配[J]. 汽车工程, 2008, 30(2): 141-145.

    GU Zheng-qi, HU Lin, HUANG Jing, et al. Vehicle navigation map matching based on modified D-S evidence rule[J]. Automotive Engineering, 2008, 30(2): 141-145. (in Chinese)
    [19] QUDDUS M A, NOLAND R B, OCHIENG W Y. Validation of map matching algorithms using high precision positioning with GPS[J]. Journal of Navigation, 2005, 58(2): 257-271. doi: 10.1017/S0373463305003231
    [20] YU Biao, DONG Lin, XUE De-yi, et al. A hybrid dead reckoning error correction scheme based on extended Kalman filter and map matching for vehicle self-localization[J]. Journal of Intelligent Transportation Systems, 2018, 23(1): 84-98.
    [21] NEWSON P, KRUMM J. Hidden Markov map matching through noise and sparseness[C]//ACM. Proceedings of the 17th ACM Sigspatial International Conference on Advances in Geographic Information Systems. New York: ACM, 2009: 336-343.
    [22] HSUEH Y L, CHEN He-qian. Map matching for low-sampling- rate GPS trajectories by exploring real-time moving directions[J]. Information Sciences, 2018, 433: 55-69.
    [23] JIANG Lin-li, CHEN Chao-xiong, CHEN Chao. L2MM: learning to map matching with deep models for low-quality GPS trajectory data[J]. ACM Transactions on Knowledge Discovery from Data, 2023, 17(3): 1-25.
    [24] 刘峰, 郭阳, 郑辛, 等. 基于道路几何特征的地图匹配方法研究[J]. 导航定位与授时, 2020, 7(1): 67-72.

    LIU Feng, GUO Yang, ZHENG Xin, et al. Study on map matching method based on geometric features of road[J]. Navigation Positioning and Timing, 2020, 7(1): 67-72. (in Chinese)
    [25] MICHAU G, NANTES A, BHASKAR A, et al. Bluetooth data in an urban context: retrieving vehicle trajectories[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(9): 2377-2386. doi: 10.1109/TITS.2016.2642304
    [26] WHITE C E, BERNSTEIN D, KORNHAUSER A L. Some map matching algorithms for personal navigation assistants[J]. Transportation Research Part C: Emerging Technologies, 2000, 8(1-6): 91-108. doi: 10.1016/S0968-090X(00)00026-7
    [27] 汪小寒, 何增宇, 胡王悟, 等. 复杂路段的角度差和后续点地图匹配方法[J]. 计算机应用研究, 2022, 39(2): 379-384.

    WANG Xiao-han, HE Zeng-yu, HU Wang-wu, et al. Map matching method for complex road sections via difference and subsequent points[J]. Application Research of Computers, 2022, 39(2): 379-384. (in Chinese)
    [28] TAYLOR G, BLEWITT G, STEUP D, et al. Road reduction filtering for GPS-GIS navigation[J]. Transactions in GIS, 2001, 5(3): 193-207. doi: 10.1111/1467-9671.00077
    [29] CHEN D, DRIEMEL A, GUIBAS L J, et al. Approximate map matching with respect to the Fréchet distance[C]// WHITFORD A B. 2011 Proceedings of the Thirteenth Workshop on Algorithm Engineering and Experiments. Naples: Society for Industrial and Applied Mathematics, 2011: 75-83.
    [30] 上官伟, 袁重阳, 蔡伯根, 等. 北斗二代在西部低密度铁路中的应用[J]. 交通运输工程学报, 2016, 16(5): 132-141. doi: 10.19818/j.cnki.1671-1637.2016.05.015

    SHANGGUAN Wei, YUAN Chong-yang, CAI Bai-gen, et al. Application of BDS in western low-density railway lines[J]. Journal of Traffic and Transportation Engineering, 2016, 16(5): 132-141. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2016.05.015
    [31] XU Qian, WANG Mei-ling, DU Zhi-fang, et al. A positioning algorithm of autonomous car based on map-matching and environmental perception[C]//IEEE. Proceedings of the 33rd Chinese Control Conference. New York: IEEE, 2014: 707-712.
    [32] HAN Yong-qian, ZHAO Dun-hui, ZHANG Xin-gang, et al. Map matching algorithm based on trajectory feature identification[C]//IEEE. 2021 40th Chinese Control Conference. New York: IEEE, 2021: 3657-3661.
    [33] BLAZQUEZ C A, VONDEROHE A P. Simple map-matching algorithm applied to intelligent winter maintenance vehicle data[J]. Transportation Research Record, 2005(1935): 68-76.
    [34] PEREIRA F C, COSTA H, PEREIRA N M. An off-line map-matching algorithm for incomplete mapdatabases[J]. European Transport Research Review, 2009, 1(3): 107-124. doi: 10.1007/s12544-009-0013-6
    [35] LIU You-wen. Forecast map matching model for vehicle- borne navigation based on roadway character-istic[C]//IEEE. 2010 International Conference on Optoelectronics and Image Processing. New York: IEEE, 2010: 569-571.
    [36] VELAGA N R, QUDDUS M A, BRISTOW A L. Improving the performance of a topological map-matching algorithm through error detection and correction[J]. Journal of Intelligent Transportation Systems, 2012, 16(3): 147-158. doi: 10.1080/15472450.2012.691852
    [37] 李殿茜, 王翌, 刘垒, 等. 一种地图匹配算法的设计与实现[J]. 导航定位与授时, 2017, 4(2): 31-34.

    LI Dian-xi, WANG Yi, LIU Lei, et al. The design and implementation of a map matching algorithm[J]. Navigation Positioning and Timing, 2017, 4(2): 31-34. (in Chinese)
    [38] QUDDUS M A, OCHIENG W Y, ZHAO Lin, et al. A general map matching algorithm for transport telematics applications[J]. GPS Solutions, 2003, 7(3): 157-167. doi: 10.1007/s10291-003-0069-z
    [39] VELAGA N R, QUDDUS M A, BRISTOW A L. Developing an enhanced weight-based topological map-matching algorithm for intelligent transport systems[J]. Transportation Research Part C: Emerging Technologies, 2009, 17(6): 672-683. doi: 10.1016/j.trc.2009.05.008
    [40] YUAN Jing, ZHENG Yu, ZHANG Cheng-yang, et al. An interactive-voting based map matching algorithm[C]//IEEE. 2010 Eleventh International Conference on Mobile Data Management. New York: IEEE, 2010: 43-52.
    [41] QUDDUS M, WASHINGTON S. Shortest path and vehicle trajectory aided map-matching for low frequency GPS data[J]. Transportation Research Part C: Emerging Technologies, 2015, 55: 328-339. doi: 10.1016/j.trc.2015.02.017
    [42] DU Zi-xue, LIU Bin-yan, XIA Qin. Map matching algorithm based on V2I technology[C]//IEEE. 2018 International Conference on Robots and Intelligent System. New York: IEEE, 2018: 137-140.
    [43] 张贺, 孙婉莹, 宋国平. 基于特征权重的地图匹配算法研究[J]. 中国新技术新产品, 2022, DOI: 10.13612/j.cnkicntp.2022.23.027.

    ZHANG He, SUN Wan-ying, SONG Guo-ping. Research on feature weight-based map matching algorithm[J]. China New Technology and New Products, 2022, DOI: 10.13612/j.cnkicntp.2022.23.027.(inChinese)
    [44] ZHANG Lun, ZHANG Meng, YANG Wen-chen, et al. Golden ratio genetic algorithm based approach for modelling and analysis of the capacity expansion of urban road traffic network[J]. Computational Intelligence and Neuroscience, 2015, 2015(1): 1-9.
    [45] CHEN Peng, TONG Rui, LU Guang-quan, et al. The α-reliable path problem in stochastic road networks with link correlations: a moment-matching-based path finding algorithm[J]. Expert Systems with Applications, 2018, 110: 20-32. doi: 10.1016/j.eswa.2018.05.022
    [46] 吴刚, 邱煜晶, 王国仁. 基于隐马尔可夫模型和遗传算法的地图匹配算法[J]. 东北大学学报(自然科学版), 2017, 38(4): 472-475.

    WU Gang, QIU Yu-jing, WANG Guo-ren. Map matching algorithm based on hidden markov model and genetic algorithm[J]. Journal of Northeastern University (Natural Science), 2017, 38(4): 472-475. (in Chinese)
    [47] CHEHREGHAN A, ALI ABBASPOUR R. A geometric-based approach for road matching on multi-scale datasets using a genetic algorithm[J]. Cartography and Geographic Information Science, 2018, 45(3): 255-269. doi: 10.1080/15230406.2017.1324823
    [48] SINGH S, SINGH J, SEHRA S S. Genetic-inspired map matching algorithm for real-time GPS trajectories[J]. Arabian Journal for Science and Engineering, 2020, 45(4): 2587-2603. doi: 10.1007/s13369-019-04247-1
    [49] YIN Dan-dong, DU Shi-hong, WANG Shao-wen, et al. A direction-guided ant colony optimization method for extraction of urban road information from very-high-resolution images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(10): 4785-4794. doi: 10.1109/JSTARS.2015.2477097
    [50] 巩现勇, 武芳, 姬存伟, 等. 道路网匹配的蚁群算法求解模型[J]. 武汉大学学报(信息科学版), 2014, 39(2): 191-195.

    GONG Xian-yong, WU Fang, JI Cun-wei, et al. Ant colony algorithm solution model for road network matching[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2): 191-195. (in Chinese)
    [51] GONG Yue-jiao, CHEN En, ZHANG Xing-lin, et al. AntMapper: an ant colony-based map matching approach for trajectory-based applications[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(2): 390-401.
    [52] LIU Ji-ping, XU Sheng-hua, ZHANG Fu-hao, et al. A hybrid genetic-ant colony optimization algorithm for the optimal path selection[J]. Intelligent Automation and Soft Computing, 2017, 23(2): 235-242. doi: 10.1080/10798587.2016.1196926
    [53] FU Meng-yin, LI Jie, WANG Mei-ling. A hybrid map matching algorithm based on fuzzy comprehensive judgment[C]// IEEE. The 7th International IEEE Conference on Intelligent Transportation Systems. New York: IEEE, 2004: 613-617.
    [54] SYED S, CANNON M E. Fuzzy logic based-map matching algorithm for vehicle navigation system in urban canyons[C]// WELLS J K. Proceedings of the 2004 National Technical Meeting of the Institute of Navigation. Washington DC: Institute of Navigation, 2004: 982-993.
    [55] ZHANG Yong-qiang, GAO Yan-yan. A fuzzy logic map matching algorithm[C]//IEEE. 2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery. New York: IEEE, 2008: 132-136.
    [56] 张涛, 杨殿阁, 李克强, 等. 车辆导航中带匹配度反馈的模糊地图匹配算法[J]. 清华大学学报: 自然科学版, 2009, 49(2): 277-280.

    ZHANG Tao, YANG Dian-ge, LI Ke-qiang, et al. Fuzzy map-matching algorithm with confidence feedback for vehicle navigation[J]. Journal of Tsinghua University: Science and Technology, 2009, 49(2): 277-280. (in Chinese)
    [57] YANG Yan-lan, YE Hua, FEI Shu-min. Integrated map-matching algorithm based on fuzzy logic and dead reckoning[C]//IEEE. 2010 International Conference on Control, Automation and Systems. New York: IEEE, 2010: 1139-1142.
    [58] NASSREDDINE G, ABDALLAH F, DENലUX T. Map matching algorithm using belief function theory[C]//IEEE. 2008 11th International Conference on Information Fusion. New York: IEEE, 2008: 1-8.
    [59] 胡林, 谷正气, 杨易, 等. 基于权值D-S证据理论的车辆导航地图匹配[J]. 中国公路学报, 2008, 21(2): 116-120.

    HU Lin, GU Zheng-qi, YANG Yi, et al. Map matching in vehicle navigation based on weighted DS evidence theory[J]. China Journal of Highway and Transport, 2008, 21(2): 116-120. (in Chinese)
    [60] 曹闻, 朱述龙, 彭煊, 等. 基于短时预测的地图匹配算法[J]. 计算机应用, 2010, 30(11): 2910-2913.

    CAO Wen, ZHU Shu-long, PENG Xuan, et al. Map matching algorithm based on short-term prediction[J]. Computer Applications, 2010, 30(11): 2910-2913. (in Chinese)
    [61] ZHAO Xiang-mo, CHENG Xin, ZHOU Jing-mei, et al. Advanced topological map matching algorithm based on D-S theory[J]. Arabian Journal for Science and Engineering, 2018, 43: 3863-3874. doi: 10.1007/s13369-017-2569-0
    [62] YANG Feng-bao, WEI Hong, FENG Pei-pei. A hierarchical dempster-shafer evidence combination framework for urban area land cover classification[J]. Measurement, 2020, 151: 105916. doi: 10.1016/j.measurement.2018.09.058
    [63] NIE Qing-hui, XIA Jing-xin, QIAN Zhen-dong, et al. Use of multisensor data in reliable short-term travel time forecasting for urban roads: Dempster-Shafer approach[J]. Transportation Research Record, 2015(2526): 61-69.
    [64] CAI Jian-nan, JEON J H, CAI Hu-bo, et al. Fusing heterogeneous information for underground utility map generation based on Dempster-Shafer theory[J]. Journal of Computing in Civil Engineering, 2020, 34(3): 1-14.
    [65] 杨易, 谷正气, 胡林, 等. 基于概率决策的车辆导航系统地图匹配算法[J]. 汽车工程, 2006, 28(10): 897-901.

    YANG Yi, GU Zheng-qi, HU Lin, et al. Map matching algorithm for vehicle navigation system based on probability decision rule[J]. Automotive Engineering, 2006, 28(10): 897-901. (in Chinese)
    [66] ZHAO Shuai-dong, ZHANG Kui-lin. A distributionally robust optimization approach to reconstructing missing locations and paths using high-frequency trajectory data[J]. Transportation Research Part C: Emerging Technologies, 2019, 102: 316-335. doi: 10.1016/j.trc.2019.03.012
    [67] JABBOUR M, BONNIFAIT P, CHERFAOUI V. Map-matching integrity using multihypothesis road-tracking[J]. Journal of Intelligent Transportation Systems, 2008, 12(4): 189-201. doi: 10.1080/15472450802448179
    [68] CHEN Bi-yu, YUAN Hui, LI Qing-quan, et al. Map-matching algorithm for large-scale low-frequency floating car data[J]. International Journal of Geographical Information Science, 2014, 28(1): 22-38. doi: 10.1080/13658816.2013.816427
    [69] ZHANG Qing-xiang, WANG Mei-ling, YUE Yu-feng. Robust semantic map matching algorithm based on probabilistic registration model[C]//IEEE. 2021 IEEE International Conference on Robotics and Automation. New York: IEEE, 2021: 5289-5295.
    [70] OBRADOVIC D, LENZ H, SCHUPFNER M. Fusion of map and sensor data in a modern car navigation system[J]. The Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology, 2006, 45(1/2): 111-122.
    [71] CHU H J, TSAI G J, CHIANG K W, et al. GPS/MEMS INS data fusion and map matching in urban areas[J]. Sensors, 2013, 13(9): 11280-11288. doi: 10.3390/s130911280
    [72] WANG Hong-yu, LI Jin, HOU Zhen-shan, et al. Research on parallelized real-time map matching algorithm for massive GPS data[J]. Cluster Computing, 2017, 20: 1123-1134. doi: 10.1007/s10586-017-0869-5
    [73] ASGHAR R, GARZÓN M, LUSSEREAU J, et al. Vehicle localization based on visual lane marking and topological map matching[C]//IEEE. 2020 IEEE International Conference on Robotics and Automation. New York: IEEE, 2020: 258-264.
    [74] 王东京, 刘继涛, 俞东进. 电动自行车轨迹简化与自适应地图匹配算法[J]. 软件学报, 2023, 34(8): 3793-3820.

    WANG Dong-jing, LIU Ji-tao, YU Dong-jin. Trajectory simplification and adaptive map matching algorithm for electric bicycle[J]. Journal of Software, 2023, 34(8): 3793-3820. (in Chinese)
    [75] XU Hao, LIU Hong-chao, TAN C W, et al. Development and application of an enhanced Kalman filter and global positioning system error-correction approach for improved map-matching[J]. Journal of Intelligent Transportation Systems, 2010, 14(1): 27-36. doi: 10.1080/15472450903386013
    [76] YUAN Yu-shan, LYU Jin-yang. Research on train positioning system based on map matching and multi-information fusion[C]// IEEE. 2020 IEEE 6th International Conference on Computer and Communications. New York: IEEE, 2020: 2271-2275.
    [77] YU Bao-guo, JIA Hao-nan, WANG Xin-jian, et al. An indoor map matching algorithm based on improved particle filter[C]//IEEE. 2022 IEEE 10th International Conference on Information, Communication and Networks. New York: IEEE, 2022: 158-163.
    [78] 赖国良, 胡钊政, 周哲, 等. 基于语义似然与高精度地图匹配的智能车辆同时定位与检测[J]. 上海交通大学学报, 2023. DOI: 10.16183/j.cnki.jsjtu.2023.086.

    LAI Guo-liang, HU Zhao-zheng, ZHOU Zhe, et al. Simultaneous detection and localization for intelligent vehicles from HD map matchingwith semantic likelihood model[J]. Journal of Shanghai Jiao Tong University, 2023, DOI: 10.16183/j.cnki.jsjtu.2023.086.(inChinese)
    [79] RAO Wen-ming, WU Yao-jan, XIA Jing-xin, et al. Origin-destination pattern estimation based on trajectory reconstruction using automatic license plate recognition data[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 29-46. doi: 10.1016/j.trc.2018.07.002
    [80] YANG Jian-hao, SUN Jian. Vehicle path reconstruction using automatic vehicle identification data: an integrated particle filter and path flow estimator[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 107-126. doi: 10.1016/j.trc.2015.07.003
    [81] FENG Yu, SUN Jian, CHEN Peng. Vehicle trajectory reconstruction using automatic vehicle identification and traffic count data[J]. Journal of Advanced Transportation, 2015, 49(2): 174-194. doi: 10.1002/atr.1260
    [82] RAYMOND R, MORIMURA T, OSOGAMI T, et al. Map matching with hidden Markov model on sampled road network[C]//IEEE. Proceedings of the 21st International Conference on Pattern Recognition. New York: IEEE, 2012: 2242-2245.
    [83] GOH C Y, DAUWELS J, MITROVIC N, et al. Online map-matching based on hidden markov model for real-time traffic sensing applications[C]//IEEE. 2012 15th International IEEE Conference on Intelligent Transportation Systems. New York: IEEE, 2012: 776-781.
    [84] OSOGAMI T, RAYMOND R. Map matching with inverse reinforcement learning[C]//ROSSI F. Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence. Beijing: International Joint Conferences on Artificial Intelligence, 2013: 2547-2553.
    [85] SMAILI C, NAJJAR M E B E, CHARPILLET F. A hybrid Bayesian framework for map matching: formulation using switching kalman filter[J]. Journal of Intelligent and Robotic Systems, 2014, 74(3/4): 725-743.
    [86] KOLLER H, WIDHALM P, DRAGASCHNIG M, et al. Fast hidden Markov model map-matching for sparse and noisy trajectories[C]//IEEE. 2015 IEEE 18th International Conference on Intelligent Transportation Systems. New York: IEEE, 2015: 2557-2561.
    [87] MOHAMED R, ALY H, YOUSSEF M. Accurate real-time map matching for challenging environments[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 18(4): 847-857.
    [88] LUO An, CHEN Sheng-hua, XU Bin. Enhanced map-matching algorithm with a hidden Markov model for mobile phone positioning[J]. ISPRS International Journal of Geo-Information, 2017, 6(11): 327. doi: 10.3390/ijgi6110327
    [89] YANG Can, GIDOFALVI G. Fast map matching, an algorithm integrating hidden Markov model with precomputation[J]. International Journal of Geographical Information Science, 2018, 32(3): 547-570. doi: 10.1080/13658816.2017.1400548
    [90] QI Hui, DI Xiao-qiang, LI Jin-qing. Map-matching algorithm based on the junction decision domain and the hidden Markov model[J]. PLoS ONE, 2019, 14(5): 1-20.
    [91] LI Hai-jun, CHEN Zhan-fang, CUI Guang-cai, et al. A fast map matching algorithm based on topological relation of road network[C]//IEEE. 2019 International Conference on Machine Learning, Big Data and Business Intelligence. New York: IEEE, 2019: 14-18.
    [92] DOGRAMADZI M, KHAN A. Accelerated map matching for GPS trajectories[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(5): 4593-4602.
    [93] 袁祎, 陈光武. 基于改进HMM的车辆轨迹匹配方法研究(英文)[J]. 计量科学与仪器, 2024, 15(2): 235-243.

    YUAN Yi, CHEN Guang-wu. Research on vehicle trajectory matching method based on improved HMM[J]. Journal of Measurement Science and Instrumentation, 2024, 15(2): 235-243. (in Chinese)
    [94] LOU Yin, ZHANG Cheng-yang, ZHENG Yu, et al. Map-matching for low-sampling-rate GPS trajectories[C]//ACM. Proceedings of the 17th ACM Sigspatial International Conference on Advances in Geographic Information Systems. New York: ACM, 2009: 352-361.
    [95] CAO Qi, DENG Yue, REN Gang, et al. Jointly estimating the most likely driving paths and destination locations with incomplete vehicular trajectory data[J]. Transportation Research Part C: Emerging Technologies, 2023, 155: 1-27.
    [96] CAO Qi, REN Gang, LI Da-wei, et al. Map matching for sparse automatic vehicle identification data[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(7): 6495-6508.
    [97] JIANG Lin-li, CHEN Chao-xiong, CHEN Chao, et al. From driving trajectories to driving paths: a survey on map-matching algorithms[J]. CCF Transactions on Pervasive Computing and Interaction, 2022, 4(3): 252-267. doi: 10.1007/s42486-022-00101-w
    [98] 苏海滨, 王光政, 王继东. 基于模糊神经网络的地图匹配算法[J]. 北京科技大学学报, 2012, 34(1): 43-47.

    SU Hai-bin, WANG Guang-zheng, WANG Ji-dong. Map matching algorithm based on fuzzy neural networks[J]. Journal of University of Science and Technology Beijing, 2012, 34(1): 43-47. (in Chinese)
    [99] HASHEMI M, KARIMI H A. A machine learning approach to improve the accuracy of GPS-based map-matching algorithms[C]//IEEE. 2016 IEEE 17th International Conference on Information Reuse and Integration. New York: IEEE, 2016: 77-86.
    [100] ZHAO Kai, FENG Jie, XU Zhao, et al. Deep MM: deep learning based map matching with data augmentation[C]//ACM. Proceedings of the 27th ACM Sigspatial International Conference on Advances in Geographic Information Systems. New York: ACM, 2019: 452-455.
    [101] SHEN Zhi-hao, DU Wan, ZHAO Xi, et al. DMM: fast map matching for cellular data[C]//ACM. Proceedings of the 26th Annual International Conference on Mobile Computing and Networking. New York: ACM, 2020: 1-14.
    [102] JIN Zhi-xiong, KIM J, YEO H, et al. Transformer-based map-matching model with limited labeled data using transfer-learning approach[J]. Transportation Research Part C: Emerging Technologies, 2022, 140: 1-25.
    [103] QIU Shu-han, QIN Guo-yang, WONG M, et al. Routes former: a sequence-based route choice transformer for efficient path inference from sparse trajectories[J]. Transportation Research Part C: Emerging Technologies, 2024, 162: 1-38.
    [104] WEI Hua, CHEN Cha-cha, LIU Chang, et al. Learning to simulate on sparse trajectory data[C]//DONG Yu-xiao. 2021 European Conference on Machine Learning and Knowledge Discovery in Databases: Applied Data Science Track. Berlin: Springer, 2021: 530-545.
    [105] ZHENG Yu, XIE Xing, MA Wei-ying. GeoLife: a collaborative social networking service among user, location and trajectory[J]. IEEE Data Engineering Bulletin, 2010, 33(2): 32-39.
    [106] YUAN Jing, ZHENG Yu, ZHANG Cheng-yang, et al. T-drive: driving directions based on taxi trajectories[C]//ACM. Proceedings of the 18th SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2010: 99-108.
    [107] ETEMAD M, SOARES JÚNIOR A, MATWIN S. Predicting transportation modes of gps trajectories using feature engineering and noise removal[C]//Canadian Society for Intelligent Research. 2018 Canadian Conference on Artificial Intelligence. Berlin: Springer, 2018: 259-264.
    [108] ABDELAZIZ N, EL-RABBANY A. Deep learning-aided inertial/visual/lidar integration for GNSS-challenging environments[J]. Sensors, 2023, 23(13): 1-20. doi: 10.1109/JSEN.2023.3287172
    [109] ASRAF O, SHAMA F, KLEIN I. PDRNet: a deep-learning pedestrian dead reckoning framework[J]. IEEE Sensors Journal, 2021, 22(6): 4932-4939.
    [110] DELMERICO J, CIESLEWSKI T, REBECQ H, et al. Are we ready for autonomous drone racing? The UZH-FPV drone racing dataset[C]//IEEE. 2019 IEEE International Conference on Robotics and Automation. New York: IEEE, 2019: 6713-6719.
    [111] SHI Xue-song, LI Dong-jiang, ZHAO Peng-peng, et al. Are we ready for service robots? The openloris-scene datasets for lifelong slam[C]//IEEE. 2020 IEEE International Conference on Robotics and Automation. New York: IEEE, 2020: 3139-3145.
    [112] MADDERN W, PASCOE G, LINEGAR C, et al. 1 year, 1000 km: the Oxford robotcar dataset[J]. The International Journal of Robotics Research, 2017, 36(1): 3-15. doi: 10.1177/0278364916679498
    [113] RAMEZANI M, WANG Y, CAMURRI M, et al. The newer college dataset: handheld lidar, inertial and vision with ground truth[C]//IEEE. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems. New York: IEEE, 2020: 4353-4360.
    [114] BI Jing-xue, WANG Yun-jia, YU Bao-guo, et al. Supplementary open dataset for WiFi indoor localization based on received signal strength[J]. Satellite Navigation, 2022, 3(1): 1-15.
    [115] 吴欢欢, 周建平, 许燕, 等. RFID发展及其应用综述[J]. 计算机应用与软件, 2013, 30(12): 203-206.

    WU Huan-huan, ZHOU Jian-ping, XU Yan, et al. A comprehensive review on RFID development and ITS application[J]. Computer Applications and Software, 2013, 30(12): 203-206. (in Chinese)
    [116] NGUYEN T M, YUAN Sheng-hai, CAO Mu-qing, et al. NTU VIRAL: a visual-inertial-ranging-lidar dataset, from an aerial vehicle viewpoint[J]. The International Journal of Robotics Research, 2022, 41(3): 270-280.
    [117] MOONEY P, MINGHINI M. A review of OpenStreetMap data[J]. Mapping and the Citizen Sensor, 2017, DOI: 10.5334/bbf.c.
    [118] ZAMIR A R, SHAH M. Accurate image localization based on google maps street view[C]//BARROW H G. 11th European Conference on Computer Vision. Berlin: Springer, 2010: 255-268.
    [119] 王昭雨, 庄惟敏. 基于图像深度学习的街区更新后评估方法研究——以北京什刹海街区为例[J]. 新建筑, 2022(3): 5-8.

    WANG Zhao-yu, ZHUANG Wei-min. Research on block renewal post occupancy evaluation methods based on image deep learning: a case study of Shichahai in Beijing[J]. New Architecture, 2022(3): 5-8. (in Chinese)
    [120] 李力, 张婧, 瓦希德·穆萨维, 等. 大数据驱动的城市更新设计方法初探[J]. 新建筑, 2021(2): 37-41.

    LI Li, ZHANG Jing, MOOSAVI V, et al. A preliminary study of big data driven urban renewal design[J]. New Architecture, 2021(2): 37-41. (in Chinese)
    [121] 陈滨, 王平, 施文灶, 等. GPS轨迹数据的综合地图匹配算法研究[J]. 电子科技, 2014, 27(12): 20-23.

    CHEN Bin, WANG Ping, SHI Wen-zao, et al. An integrated map-matching algorithm based on GPS[J]. Electronic Science and Technology, 2014, 27(12): 20-23. (in Chinese)
    [122] HASHEMI M, KARIMI H A. A critical review of real-time map-matching algorithms: current issues and future directions[J]. Computers, Environment and Urban Systems, 2014, 48: 153-165.
    [123] GAN Nian-fei, ZHANG Miao-miao, ZHOU Bing, et al. Spatio-temporal heuristic method: a trajectory planning for automatic parking considering obstacle behavior[J]. Journal of Intelligent and Connected Vehicles, 2022, 5(3): 177-187.
    [124] ZHAO Jian-sen, MA Xin, YANG Bing, et al. Global path planning of unmanned vehicle based on fusion of A* algorithm and Voronoi field[J]. Journal of Intelligent and Connected Vehicles, 2022, 5(3): 250-259.
    [125] 彭涛, 许庆, 陈强, 等. 异构载货车辆队列高速换道分布式反馈线性化控制[J]. 汽车安全与节能学报, 2022, 13(3): 473-481.

    PENG Tao, XU Qing, CHEN Qiang, et al. Distributed feedback linear control for heterogeneous freight vehicle platoon on highway[J]. Journal of Automotive Safety and Energy, 2022, 13(3): 473-481. (in Chinese)
    [126] DABIRI A, KULCSÁR B. Incident indicators for freeway traffic flow models[J]. Communications in Transportation Research, 2022, 2: 1-9.
    [127] 陈华伟, 邵毅明, 敖谷昌, 等. 面向在线地图的GCN-LSTM神经网络速度预测[J]. 交通运输工程学报, 2021, 21(4): 183-196. doi: 10.19818/j.cnki.1671-1637.2021.04.014

    CHEN Hua-wei, SHAO Yi-ming, AO Gu-chang, et al. Speed prediction by online map-based GCN-LSTM neural network[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 183-196. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.04.014
    [128] TSCHARAKTSCHIEW S, REIMANN F. Less workplace parking with fully autonomous vehicles?[J]. Journal of Intelligent and Connected Vehicles, 2022, 5(3): 283-301.
    [129] ZHANG Dong-qing, DONG Yu-cheng, GUO Zhao-xia. A turning point-based offline map matching algorithm for urban road networks[J]. Information Sciences, 2021, 565: 32-45.
    [130] LYU Cheng, WU Xin-hua, LIU Yang, et al. A partial-Fréchet- distance-based framework for bus route identification[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 23(7): 9275-9280.
    [131] 李军, 唐爽, 黄志祥, 等. 融合稳定性的高速无人驾驶车辆纵横向协调控制方法[J]. 交通运输工程学报, 2020, 20(2): 205-218. doi: 10.19818/j.cnki.1671-1637.2020.02.017

    LI Jun, TANG Shuang, HUANG Zhi-xiang, et al. Longitudinal and lateral coordination control method of high- speed unmanned vehicles with integrated stability[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 205-218. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.02.017
  • 加载中
图(19) / 表(4)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  24
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-06-19
  • 网络出版日期:  2024-12-20
  • 刊出日期:  2024-10-25

目录

    /

    返回文章
    返回