Safety adaptability test and calculation of tail push-type operation of power car
-
摘要: 结合试验与仿真计算,系统研究了动力集中动车组动力车尾部顶推运行方式下的安全适应性问题;开展了动力车尾部顶推方式的动力学性能试验,分析了直线、半径为300 m曲线等线路条件下动力车尾部顶推的安全适应性;采用多体动力学和子结构方法建立了包含尾部动力车、相邻两节拖车以及密接式钩缓装置三维动力学模型的12编组系统动力学模型,并结合实测数据进行了充分的模型校验;开展了更为恶劣工况下动力车尾部顶推动车组运行安全性分析,研究了不同线路该动力车尾部顶推运行方式的安全适应性。研究结果表明:半径为300 m曲线工况下,仿真计算与试验结果基本一致,车钩顶推力对尾部动力车运行安全性影响较小,由于受轮轨纵向蠕滑的影响,在较大车钩顶推力下尾部动力车运行安全性指标反而出现减小的情况,而相邻拖车的运行安全性指标受顶推力的影响相对明显;尾部动力车顶推侧向通过12号和9号道岔工况,动力车与其相邻拖车的运行安全性指标均随着车钩顶推力的增大而增大,并且当动力车发挥100%顶推力侧向通过9号道岔时,其轮重减载率和轮轴横向力会出现超限情况,应尽量减小动力车尾部顶推侧向通过道岔的车钩顶推力。Abstract: The safety adaptability of power concentrated EMUs under the tail push-type operation of power car was systematically explored with a combination of test and simulation calculation. A dynamics performance test was conducted for the tail push-type operation of power car to analyze its safety adaptability on conditions such as the straight line, and curve of 300 m radius. A 12-settings system dynamics model was constructed by multi-body dynamics and substructure methods, including a tail power car, two adjacent trailers, and a 3D dynamics model of tight-lock coupler. The dynamics model was fully revised and validated by the test data. The simulations for more dangerous cases were carried out to analyze the safety of such a power car tail push-type operation. The safety adaptability of this operation on different lines was discussed. Research results show that under the curve condition of 300 m radius, the simulation calculation is basically consistent with experimental results. The pushing force of coupler has a small impact on the safety of tail power car operation. Due to the longitudinal creep of the wheel rail, the safety index of tail power car operation decreases under larger pushing force, while the one of adjacent trailers is relatively significantly affected by the pushing force. During the lateral pushing of tail power roof through the No.12 and No.9 turnout, the safety indicators of power car and its adjacent trailer increase with the rise of the pushing force of coupler. When the power car plays the pushing force of 100% and passes through the No.9 turnout laterally, the wheel load reduction rate and the lateral force of the wheel axle will exceed the limit. Therefore, the coupler pushing force of the power car passing through the turnout laterally should be minimized as much as possible.
-
表 1 尾部动力车及拖车参数
Table 1. Parameters of tail power car and trailer
主要参数 动力车 拖车 轴距/mm 2 150(一轴与二轴间) 2 600 2 000(二轴与三轴间) 定距/mm 11 700 18 000 前后车钩中心距/mm 23 960 23 710 车体质量/kg 72 647 38 600 构架质量/kg 5 896 2 160 轮对质量/kg 2 841 1 600 一系弹簧纵向刚度(单个)/(MN·m-1) 1.85 0.80 一系弹簧横向刚度(单个)/(MN·m-1) 1.85 0.80 一系弹簧垂向刚度(单个)/(MN·m-1) 1.13 0.99 二系弹簧纵向刚度(单个)/(kN·m-1) 114.20 100.00 二系弹簧横向刚度(单个)/(kN·m-1) 114.20 100.00 二系弹簧垂向刚度(单个)/(kN·m-1) 445.00 3 700.00 -
[1] 杨守君, 王景琪, 王贤哲, 等. 160 km/h动力集中动车组动力车总体设计[J]. 机车电传动, 2020(3): 35-41.YANG Shou-jun, WANG Jing-qi, WANG Xian-zhe, et al. Overall design of 160 km/h power concentrated EMUs[J]. Electric Drive for Locomotives, 2020(3): 35-41. [2] 张志超, 李谷, 杜瑞涛, 等. 动力集中动车组动力车直线运行晃车问题研究[J]. 铁道机车车辆, 2020, 40(3): 1-6, 22. doi: 10.3969/j.issn.1008-7842.2020.03.01ZHANG Zhi-chao, LI Gu, DU Rui-tao, et al. Research on transverse vibration problem for the power car of power concentrated EMU[J]. Railway Locomotive and Car, 2020, 40(3): 1-6, 22. doi: 10.3969/j.issn.1008-7842.2020.03.01 [3] 林晖. 动力集中动车组制动系统设计与运用研究[J]. 铁道机车车辆, 2020, 40(5): 1-7, 13. doi: 10.3969/j.issn.1008-7842.2020.05.01LIN Hui. Research on design and application of brake system of power centralized EMU[J]. Railway Locomotive and Car, 2020, 40(5): 1-7, 13. doi: 10.3969/j.issn.1008-7842.2020.05.01 [4] 杨豆豆. 160 km/h动力集中动车组运行安全性能研究[D]. 成都: 西南交通大学, 2018.YANG Dou-dou. Study on running safety of 160 km/h centralized power EMU[D]. Chengdu: Southwest Jiaotong University, 2018. [5] 钱铭, 张大勇, 廖洪涛. 复兴号高原双源动力集中动车组关键技术[J]. 中国铁路, 2022(6): 1-9.QIAN Ming, ZHANG Da-yong, LIAO Hong-tao. Key technologies of Fuxing plateau dual-source power centralized EMU[J]. China Railway, 2022(6): 1-9. [6] 柳占宇, 于德壮, 李加瑞, 等. 基于拓扑和几何尺寸优化的动力集中动车组牵引梁减重优化设计[J]. 中国铁道科学, 2021, 42(6): 122-129. doi: 10.3969/j.issn.1001-4632.2021.06.13LIU Zhan-yu, YU De-zhuang, LI Jia-rui, et al. Weight reduction optimization design of traction beam in power concentrated EMU combining with topology and geometric size optimization[J]. China Railway Science, 2021, 42(6): 122-129. doi: 10.3969/j.issn.1001-4632.2021.06.13 [7] 李杰波, 张桂南, 陈波. 速度200 km/h动力集中动车组动力车牵引动力配置研究[J]. 铁道机车车辆, 2024, 44(3): 77-83. doi: 10.3969/j.issn.1008-7842.2024.03.10LI Jie-bo, ZHANG Gui-nan, CHEN bo. Research on traction power configuration of 200 km/h power centralized EMU power car[J]. Railway Locomotive and Car, 2024, 44(3): 77-83. doi: 10.3969/j.issn.1008-7842.2024.03.10 [8] 沈龙江, 邓小星, 陈国胜, 等. 速度160 km/h动力集中动车组动力车车轮踏面优化研究[J]. 铁道机车车辆, 2024, 44(3): 125-131. doi: 10.3969/j.issn.1008-7842.2024.03.17SHEN Long-jiang, DENG Xiao-xing, CHEN Guo-sheng, et al. Optimization research of wheel treads of EMU with 160 km/h power centralized[J]. Railway Locomotive and Car, 2024, 44(3): 125-131. doi: 10.3969/j.issn.1008-7842.2024.03.17 [9] 肖齐, 于卫东, 樊立新, 等. 160 km/h动力集中动车组车轮旋修优化方案研究[J]. 铁道机车车辆, 2024, 44(4): 144-150.XIAO Qi, YU Wei-dong, FAN Li-xin, et al. Research on optimization scheme of wheel profiling for 160 km/h power concentrated EMU[J]. Railway Locomotive and Car, 2024, 44(4): 144-150. [10] 王蔚, 彭其渊, 王奇, 等. 重载列车车钩力对列车偏载安全性影响[J]. 西南交通大学学报, 2021, 56(2): 378-384.WANG Wei, PENG Qi-yuan, WANG Qi, et al. Effect analysis of coupler force on heavy-haul train safety under eccentric loads[J]. Journal of Southwest Jiaotong University, 2021, 56(2): 378-384. [11] ZHANG Zhi-chao, LI Gu, CHU Gao-feng, et al. Compressed stability analysis of the coupler and buffer system of heavy-haul locomotives[J]. Vehicle System Dynamics, 2015, 53(6): 833-855. [12] 张志超, 李谷, 储高峰, 等. 电制侧向过岔时重载机车及车钩的动态特性[J]. 中国铁道科学, 2019, 40(4): 95-102. doi: 10.3969/j.issn.1001-4632.2019.04.12ZHANG Zhi-chao, LI Gu, CHU Gao-feng, et al. Dynamic characteristics of heavy haul locomotives and couplers passing through turnout branch line with electric brake[J]. China Railway Science, 2019, 40(4): 95-102. doi: 10.3969/j.issn.1001-4632.2019.04.12 [13] 邵泽展. 160 km/h动力集中动车组动力学问题综述与研究[J]. 铁道机车车辆, 2021, 41(6): 1-8. doi: 10.3969/j.issn.1008-7842.2021.06.01SHAO Ze-zhan. Research review on dynamic issue of 160 km/h power concentrated EMU[J]. Railway Locomotive and Car, 2021, 41(6): 1-8. doi: 10.3969/j.issn.1008-7842.2021.06.01 [14] 张志超, 储高峰, 王开云, 等. 重载机车安全性与钩缓装置承载稳定性研究进展[J]. 交通运输工程学报, 2024, 24(5): 195-216. doi: 10.19818/j.cnki.1671-1637.2024.05.013ZHANG Zhi-chao, CHU Gao-feng, WANG Kai-yun, et al. Research progress on safety of heavy-haul locomotive and bearing stability of couple and buffer system[J]. Journal of Traffic and Transportation Engineering, 2024, 24(5): 195-216. doi: 10.19818/j.cnki.1671-1637.2024.05.013 [15] 杨豆豆, 石俊杰, 张继业, 等. 动车组推挽式运行对动力学性能的影响[J]. 机车电传动, 2021(2): 12-18.YANG Dou-dou, SHI Jun-jie, ZHANG Ji-ye, et al. The effects on dynamic performances of EMU in push-pull operation[J]. Electric Drive for Locomotives, 2021(2): 12-18. [16] 张志超, 王磊, 李谷, 等. 动力车尾部顶推方式下列车动力学性能和安全性[J]. 中国铁道科学, 2022, 43(2): 125-133.ZHANG Zhi-chao, WANG Lei, LI Gu, et al. Train dynamic performance and safety under tail push-type operation of power car[J]. China Railway Science, 2022, 43(2): 125-133. [17] 陈波. 国外动力集中动车组网络系统的发展与借鉴[J]. 铁道机车车辆, 2019, 39(1): 7-14.CHEN Bo. Development and reference of the TCMS on power centralized EMU abroad[J]. Railway Locomotive and Car, 2019, 39(1): 7-14. [18] EBELING K. High-speed railways in Germany[J]. Japan railway and transport review, 2005, 40: 36-45. [19] SHAN Wei, WEI Lai, CHEN Kai. Longitudinal train dynamics of electric multiple units under rescue[J]. Journal of Modern Transportation, 2017, 25(4): 250-260. [20] 臧其吉. 德国高速列车技术的发展[J]. 机车电传动, 2003(5): 10-14.ZANG Qi-ji. Development of German high speed train technology[J]. Electric Drive for Locomotives, 2003(5): 10-14. [21] ZHANG Zhi-chao, LI Gu, CHU Gao-feng, et al. Dynamic performance analysis of heavy-haul locomotives running through turnout branches with electric brake[J]. Vehicle System Dynamics, 2020, 58(7): 1057-1075. -