留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

固废材料在沥青路面中的低碳化应用进展与趋势

陈磊磊 朱纪凯 叶勤 赵鑫元 钱振东

陈磊磊, 朱纪凯, 叶勤, 赵鑫元, 钱振东. 固废材料在沥青路面中的低碳化应用进展与趋势[J]. 交通运输工程学报, 2026, 26(1): 93-115. doi: 10.19818/j.cnki.1671-1637.2026.047
引用本文: 陈磊磊, 朱纪凯, 叶勤, 赵鑫元, 钱振东. 固废材料在沥青路面中的低碳化应用进展与趋势[J]. 交通运输工程学报, 2026, 26(1): 93-115. doi: 10.19818/j.cnki.1671-1637.2026.047
CHEN Lei-lei, ZHU Ji-kai, YE Qin, ZHAO Xin-yuan, QIAN Zhen-dong. Progress and trends of low-carbon application of waste materials in asphalt pavements[J]. Journal of Traffic and Transportation Engineering, 2026, 26(1): 93-115. doi: 10.19818/j.cnki.1671-1637.2026.047
Citation: CHEN Lei-lei, ZHU Ji-kai, YE Qin, ZHAO Xin-yuan, QIAN Zhen-dong. Progress and trends of low-carbon application of waste materials in asphalt pavements[J]. Journal of Traffic and Transportation Engineering, 2026, 26(1): 93-115. doi: 10.19818/j.cnki.1671-1637.2026.047

固废材料在沥青路面中的低碳化应用进展与趋势

doi: 10.19818/j.cnki.1671-1637.2026.047
基金项目: 

国家重点研发计划 2024YFB2605101

江苏省科技计划省市联合资助项目 BK20232036

详细信息
    作者简介:

    陈磊磊(1985-),男,安徽淮南人,副教授,工学博士,E-mail: chenleilei@seu.edu.cn

  • 中图分类号: U416.2

Progress and trends of low-carbon application of waste materials in asphalt pavements

Funds: 

National Key R&D Program of China 2024YFB2605101

Provincial-municipal Jointly Funded Project of the Jiangsu Science and Technology Program BK20232036

More Information
Article Text (Baidu Translation)
  • 摘要: 为了促进固废材料在沥青路面中的低碳化应用, 从固废原材料、固废沥青混合料、固废沥青路面3个维度对固废材料应用进展进行了系统回顾与分析。在固废原材料方面, 归纳了面向减碳的材料分类、变异性、环境风险及其处治方式; 在固废沥青混合料方面, 分别从固废掺量提升及混合料耐久性提升2个方向综述固废材料低碳化路用的现状与趋势; 在固废沥青路面方面, 从结构设计与施工技术2个视角探索固废材料的高层位及全层位应用可行性。研究结果表明: 固废原材料具备路用适配性, 但其变异性与潜在环境影响是限制其大规模利用的关键, 需构建多源固废分类分级体系并配套相应的处治方式; 固废掺量提升将导致混合料路用性能不稳定, 掺量对混合料性能劣化机制以及不同固废相互作用机制仍待明晰, 全量化固废沥青混合料研究尚处于起步阶段, 是未来需要解决的重要问题; 固废沥青混合料耐久性提升技术, 尤其是固废材料与胶结料性能提升领域, 仍有待持续开展机理探索与应用实践; 从面向低碳化的高层位及全层位应用角度来看, 现有沥青路面结构设计与施工方法仍有待提升, 应针对固废特性对结构设计与施工方法进行改进。

     

  • 图  1  固废环境影响机制

    Figure  1.  Mechanism of solid waste environmental impact

    图  2  不同工艺钢渣体积膨胀特性削减效果

    Figure  2.  Reduction effect of steel slag volume expansion characteristics under different processes

    图  3  建设期减碳与营运期减碳平衡点

    Figure  3.  Balance point between carbon reduction during construction and carbon reduction during operation

    图  4  全量化固废沥青混合料组配思路

    Figure  4.  Complete solid waste asphalt mixture formulation ideas

    表  1  固废材料分类、来源及路用优缺点

    Table  1.   Classification, sources, and advantages and disadvantages of road application of solid waste materials

    固废类型 固废名称 来源组成 路用优缺点
    天然材料替代类 骨料替代类 钢渣 炼钢过程中排出的高温熔融废渣,经冷却破碎形成,主要成分为CaO、SiO2、Fe2O3、MgO等 优点:力学性能优异、棱角丰富、高碱性
    缺点:安定性差、吸油率高、界面性能不稳定;碱性渗滤液污染水体、重金属存在析出风险
    RAP料 铣刨旧沥青路面所得,含旧骨料和老化沥青 优点:高温性能好、级配与强度适用
    缺点:沥青老化、级配与强度不稳定
    建筑垃圾 拆除、施工产生的混凝土块、砖瓦、砂浆等混合废料 优点:表面粗糙嵌挤性好、有一定胶结活性
    缺点:强度低、吸水率高、耐久性差、质量波动大
    油页岩废渣 油页岩干馏取油后的固体废渣,成分为SiO2、Al2O3、CaO等 优点:密度适中、强度较高
    缺点:与沥青相容性差;部分含有机残留,可能有浸出风险
    填料替代类 粉煤灰 煤燃烧后的烟气中收集的细灰,主要成分为SiO2、Al2O3、Fe2O3、少量CaO 优点:填充性好、火山灰反应
    缺点:早期强度低、对水敏感;含微量重金属和可溶盐,粉尘可致呼吸危害
    煤矸石 煤炭开采与洗选中排出的固体废石,主要为SiO2、Al2O3、少量有机物 优点:不规则填料密实性好、粒径适宜
    缺点:强度低、易风化分解、遇水软化;风化粉尘污染,渗水易酸化
    铁尾矿 选铁矿石过程中排出的细粒尾矿砂,主要为SiO2、Fe2O3等矿物 优点:颗粒坚硬、磨耗性好
    缺点:细度高需级配调整;重金属析出风险
    赤泥 氧化铝生产过程中排出的碱性废渣,主要含Al2O3、Fe2O3、TiO2 优点:颗粒细、比表面积大、稳定性好
    缺点:与沥青相容性差、细粉多易泥化;高碱度渗滤液污染水体,重金属析出风险
    沥青改性类 废胶粉 废旧轮胎加工成的细橡胶粉,主要为交联橡胶 优点:改善沥青弹性、抗裂性和耐久性
    缺点:沥青相容性差、易导致施工难度升高;热加工释放挥发性有机物
    废塑料 工业生产活动中产生的废弃聚乙烯、聚丙烯、PET等塑料制品 优点:改性沥青可提升抗裂性和耐久性
    缺点:与沥青相容性差,热稳定性不足;热加工释放挥发性有机物(VOCs),微塑料颗粒可能长期残留
    废风电叶片 报废的风电叶片粉碎物,主要为玻璃纤维增强环氧树脂 优点:稳定性极高、纤维增强可提高混合料韧性
    缺点:纤维表面残留树脂、界面性能及分散性差;玻璃纤维刺激皮肤并且有吸入风险
    磷石膏 湿法磷酸生产中生成的副产物,主要成分为CaSO4·2H2O、少量酸 优点:颗粒细、刚性大、表面极性好利于黏附
    缺点:含游离酸和可溶磷、吸水率高,易水损;含游离酸、可溶磷、氟化物,污染土壤与水体
    磷尾矿 选磷矿过程中产生的尾矿砂,主要为CaCO3、SiO2、磷酸盐矿物 优点:硬度高、刚性大、表面粗糙
    缺点:盐类杂质不稳定、吸水率高、级配不良;可溶磷污染水体
    下载: 导出CSV

    表  2  固废变异性成因及其影响

    Table  2.   Causes and influence of solid waste variability

    变异类型 主要成因 性能影响 典型示例
    来源致异 原材料、生产源或回收渠道差异 成分(化学组成、活性组分)和物理性能(粒度、密度)波动大 钢渣(钢厂原料不同)、RAP(旧沥青来源差异)、磷石膏(磷矿石放射性差异)、油页岩废渣(矿床组成不同)
    工艺致异 生产工艺参数(温度、破碎方式等)不一致 影响强度、密度、含水率、表面特征等物理性能 钢渣(冷却工艺差异)、建筑垃圾(破碎设备不同)、粉煤灰(除尘工艺影响细度)、RAP(铣刨工艺影响级配和强度)
    储运致异 储存方式(露天/密封)、运输污染或混杂 杂质混入(如建筑垃圾混入生活垃圾)、含水率波动(粉煤灰吸湿)、化学反应(煤矸石自燃) 煤矸石(堆放自燃产生SO2)、废塑料(运输中污染)、赤泥(露天堆放碱液渗出)、铁尾矿(渗漏重金属污染)
    时空致异 长期堆放导致风化、氧化或降解 化学稳定性下降(钢渣膨胀开裂)、物理性能退化(废胶粉弹性丧失)、有害物质释放(磷石膏放射性析出) 废风电叶片(紫外线降解树脂)、磷尾矿(长期淋溶产酸)、赤泥(干燥后粉尘扩散)、RAP(沥青老化变脆)
    下载: 导出CSV

    表  3  典型路用固废环境风险分类、影响机理与控制

    Table  3.   Environmental risk classification, impact mechanism and control of typical road solid waste

    分类 典型固废 测试方法 影响机制 改善/控制措施
    化学浸出 钢渣[19] 浸出试验、常规性能测试、化学组成与元素测定、微观形貌观测、孔隙率及粒径测试等 Cr、Cu、Ba、Ca等在碱性条件下易析出;Cr3+氧化溶解可生成高毒Cr6+ 碳化/硫化;调整级配设计等
    煤矸石[20] 饱水煤矸石持续溶出As、Cr、Ni、Cu等,水溶胶体作为载体迁移重金属 微生物封存、复合材料隔层等
    磷石膏[21] 含F-、PO43-4、AsI3+、Pb2+226Ra等,雨淋可导致毒/放射性离子浸出 碱激发沉淀
    大气排放 RAP[22-23] 荧光追踪、色谱分析、质谱识别、浸出试验等 旧沥青膜中PAHs(多环芳烃)老化浓缩,在高温、雨淋、破裂、磨损等情况下更易释放 降低再生温度、增强包覆致密性、物理吸附
    废橡胶[24] SBS、橡胶沥青在高温条件下裂解生成含硫含氮VOCs 物理吸附,如活性炭、沸石等
    颗粒扩散 废塑料[25] 荧光追踪、微观形貌观测、学组成与元素测定等 拌和及使用过程中机械磨耗,紫外热老化、冲刷等原因破坏材料产生微小颗粒 材料预处理增强性能,石粉填充,使用质密结构等
    下载: 导出CSV

    表  4  建设期与营运期碳平衡点变化趋势

    Table  4.   Trends in carbon balance points during construction and operation phases

    技术类别 优缺点 技术特点
    物理处治 破碎与筛分 工艺简单、成本低、适配性广,但难以解决化学活性或污染问题 通过破碎和筛分优化骨料的粒径分布,从而提高其适配性与稳定性
    磨细与均化 对料进行磨细,确保填料性能稳定,并提高材料的均匀性
    浸水处理 调节含水率并消除有害物质,同时稳定材料活性
    热处理 改善含水率,稳定/提升活性,增强适用性以及消除有害物质
    超声波处理 增强分散性与均匀性,改善微观形貌,促进界面黏附
    化学处治 无机化学改性 高效提升材料活性与稳定性,但处理成本高,工艺复杂且可能引发二次污染 通过无机胶凝材料(如硅酸盐水泥、生石灰、粉煤灰)固化有害成分,提高骨料强度和稳定性;或利用强酸/强碱溶解骨料表面杂质,激活潜在活性成分
    有机化学改性 利用聚合物(环氧树脂、沥青乳液、聚氨酯)包裹骨料表面,改善抗渗性、柔韧性及界面黏附力;或利用表面活性剂(硅烷偶联剂)改善材料表面形貌,提升黏附性与相容性
    物化联合 综合物理、化学处治优点,复合处治性能优越,但操作复杂,能耗高,对技术要求更高 利用磨细、热处理或超声波处理等多种物理处治对固废材料进行一次处理,后再利用有机/无机化学手段对固废进行化学改性二次处理
    下载: 导出CSV
  • [1] 杜强, 孙强, 杨琦, 等. 中国交通运输业碳排放驱动因素的通径分析方法[J]. 交通运输工程学报, 2017, 17(2): 143-150. https://transport.chd.edu.cn/article/id/201702016

    DU Qiang, SUN Qiang, YANG Qi, et al. Path analysis method of driving factors of carbon emissions for Chinese transportation industry[J]. Journal of Traffic and Trans-portation Engineering, 2017, 17(2): 143-150. https://transport.chd.edu.cn/article/id/201702016
    [2] LIU N, WANG Y Q, BAI Q, et al. Road life-cycle carbon dioxide emissions and emission reduction technologies: A review[J]. Journal of Traffic and Transportation Engi-neering: English Edition, 2022, 9(4): 532-555. doi: 10.1016/j.jtte.2022.06.001
    [3] 郭伊均. 加快推动典型大宗固体废弃物综合利用处置进一步促进"无废城市"高标准建设[J]. 环境保护, 2024, 52(14): 9-11.

    GUO Yi-jun. Accelerating the comprehensive utilization and disposal of typical bulk solid waste, and further promoting the high-standard construction of "zero-waste city"[J]. Environmental Protection, 2024, 52(14): 9-11.
    [4] HUANG W, HU J, LUO S. The technological innovation pathway for green, low-carbon, and durable pavement construction and maintenance[J]. Science China Techno-logical Sciences, 2024, 67(12): 3959-3961. doi: 10.1007/s11431-024-2733-6
    [5] 《中国公路学报》编辑部. 中国路面工程学术研究综述·2020[J]. 中国公路学报, 2020, 33(10): 1-66.

    Editorial Department of China Journal of Highway and Transport. Review on China's pavement engineering Research·2020[J]. China Journal of Highway and Trans-port, 2020, 33(10): 1-66.
    [6] 张军辉, 陈莎莎, 顾凡, 等. 工业废弃料在路基改良中的应用综述[J]. 中国公路学报, 2023, 36(10): 1-16.

    ZHANG Jun-hui, CHEN Sha-sha, GU Fan, et al. Industrial waste materials utilized in subgrade modification: A review[J]. China Journal of Highway and Transport, 2023, 36(10): 1-16.
    [7] 梁旭. 工业废渣赤泥在公路中的应用技术研究. 重庆: 重庆交通大学, 2009.

    LIANG Xu. Research on the application of industrial waste residue red mud in highway engineering. Chongqing: Chongqing Jiaotong University, 2009.
    [8] 司春棣, 崔亚宁, 李松, 等. 铁尾矿在沥青路面中的资源化利用研究进展与展望[J]. 材料导报, 2024, 38(22): 35-47.

    SI Chun-di, CUI Ya-ning, LI Song, et al. Advances and prospects on the resource recovery of iron tailings in asphalt pavement[J]. Materials Reports, 2024, 38(22): 35-47.
    [9] 高闻靖. 废风机叶片复合纤维改性沥青制备工艺及技术性能研究. 长沙: 湖南科技大学, 2022.

    GAO Wen-jing. Preparation process and technical properties of asphalt modified with waste wind turbine blade composite fiber. Changsha: Hunan University of Science and Tech-nology, 2022.
    [10] MAO R C, DUAN H B, DONG D, et al. Quantification of carbon footprint of urban roads via life cycle assessment: Case study of a megacity-Shenzhen, China[J]. Journal of Cleaner Production, 2017, 166: 40-48. doi: 10.1016/j.jclepro.2017.07.173
    [11] GIANI M I, DOTELLI G, BRANDINI N, et al. Compara-tive life cycle assessment of asphalt pavements using reclaimed asphalt, warm mix technology and cold in-place recycling[J]. Resources, Conservation and Recycling, 2015, 104: 224-238. doi: 10.1016/j.resconrec.2015.08.006
    [12] LUO Y F, ZHAO X C, ZHANG K. Coal gangue in asphalt pavement: A review of applications and performance influence[J]. Case Studies in Construction Materials, 2024, 20: e03282. doi: 10.1016/j.cscm.2024.e03282
    [13] 徐金枝, 郝培文, 郭晓刚, 等. 厂拌热再生沥青混合料组成设计方法综述[J]. 中国公路学报, 2021, 34(10): 72-88.

    XU Jin-zhi, HAO Pei-wen, GUO Xiao-gang, et al. Review of mix design method of hot in-plant recycled asphalt mixture[J]. China Journal of Highway and Transport, 2021, 34(10): 72-88.
    [14] 李超, 陈宗武, 谢君, 等. 钢渣沥青混凝土技术及其应用研究进展[J]. 材料导报, 2017, 31(3): 86-95, 122.

    LI Chao, CHEN Zong-wu, XIE Jun, et al. A technological and applicational review on steel slag asphalt mixture[J]. Materials Review, 2017, 31(3): 86-95, 122.
    [15] ZHANG J Z, YAO Z Y, WANG K, et al. Sustainable utili-zation of bauxite residue (Red Mud) as a road material in pavements: A critical review[J]. Construction and Building Materials, 2021, 270: 121419. doi: 10.1016/j.conbuildmat.2020.121419
    [16] 张强. 钢渣膨胀抑制方法及其沥青混合料路用性能研究. 重庆: 重庆交通大学, 2023.

    ZHANG Qiang. Study on expansion suppression methods of steel slag and road performance of asphalt mixtures. Chongqing: Chongqing Jiaotong University, 2023.
    [17] 吴少鹏, 崔培德, 谢君, 等. 钢渣集料膨胀抑制方法及混合料体积稳定性研究现状[J]. 中国公路学报, 2021, 34(10): 166-179.

    WU Shao-peng, CUI Pei-de, XIE Jun, et al. Expansive inhibition method of steel slag aggregate and volume stability of mixture: A review[J]. China Journal of Highway and Transport, 2021, 34(10): 166-179.
    [18] TAM V W Y, SOOMRO M, EVANGELISTA A C J. A review of recycled aggregate in concrete applications (2000-2017)[J]. Construction and Building Materials, 2018, 172: 272-292. doi: 10.1016/j.conbuildmat.2018.03.240
    [19] GAN Y W, LI C M, ZOU J F, et al. Evaluation of the impact factors on the leaching risk of steel slag and its asphalt mixture[J]. Case Studies in Construction Materials, 2022, 16: e01067.
    [20] SONG W, XU R P, LI X J, et al. Soil reconstruction and heavy metal pollution risk in reclaimed cultivated land with coal gangue filling in mining areas[J]. Catena, 2023, 228: 107147. doi: 10.1016/j.catena.2023.107147
    [21] MAINA L, KIEGIEL K, ZAKRZEWSKA-KOŁTUNIEWICZ G. Challenges and strategies for the sustainable environmental management of phosphogypsum[J]. Sustainability, 2025, 17(8): 3473. doi: 10.3390/su17083473
    [22] JANDOVÁ V, BUCKOVÁ M, HUZLÍK J, et al. Release of PAHs from reclaimed asphalt mixtures into the water environment after passivation by cold in-place recycling technology[J]. Environmental Science and Pollution Research, 2025, 32(5): 2455-2466. doi: 10.1007/s11356-024-35875-2
    [23] LIN A M, TIMSHINA A S, MAGNUSON J K, et al. Emerging polycyclic aromatic hydrocarbon (PAH) and trace metal leachability from reclaimed asphalt pavement (RAP)[J]. Chemosphere, 2023, 333: 138937. doi: 10.1016/j.chemosphere.2023.138937
    [24] BORINELLI J B, PORTILLO-ESTRADA M, COSTA J O, et al. Emission reduction agents: A solution to inhibit the emission of harmful volatile organic compounds from crumb rubber modified bitumen[J]. Construction and Building Materials, 2024, 411: 134455. doi: 10.1016/j.conbuildmat.2023.134455
    [25] DUAN Y F, WU K, SERRAT C, et al. Assessment of microplastics production from waste plastics-modified asphalt pavement[J]. Resources, Conservation and Recycling, 2024, 202: 107329. doi: 10.1016/j.resconrec.2023.107329
    [26] ZAUMANIS M, BOESIGER L, KUNZ B, et al. Three indexes to characterise crushing and screening of reclaimed asphalt pavement[J]. International Journal of Pavement Engi-neering, 2022, 23(14): 4977-4990. doi: 10.1080/10298436.2021.1990287
    [27] SABERI K F, FAKHRI M, AZAMI A. Evaluation of warm mix asphalt mixtures containing reclaimed asphalt pavement and crumb rubber[J]. Journal of Cleaner Production, 2017, 165: 1125-1132. doi: 10.1016/j.jclepro.2017.07.079
    [28] SUN J, HUANG W, WANG X M, et al. Feasibility of pretreated steel slag for asphalt pavement application and risk assessment of hazardous substance leaching[J]. Chemical Engineering Journal, 2024, 498: 155497. doi: 10.1016/j.cej.2024.155497
    [29] AURANGZEB Q, AL-QADI I L, OZER H, et al. Hybrid life cycle assessment for asphalt mixtures with high RAP content[J]. Resources, Conservation and Recycling, 2014, 83: 77-86. doi: 10.1016/j.resconrec.2013.12.004
    [30] GU J R, LIU X M, ZHANG Z Q. Road base materials prepared by multi-industrial solid wastes in China: A review[J]. Construction and Building Materials, 2023, 373: 130860. doi: 10.1016/j.conbuildmat.2023.130860
    [31] Copeland A. Department of transportation. federal highway administration. office of infrastructure research and develop-ment. reclaimed asphalt pavement in asphalt mixtures: State of the practice. McLean: Research, Development, and Technology Turner-Fairbank Highway Research Center, 2011.
    [32] 张志祥, 吴建浩. 再生沥青混合料疲劳性能试验研究[J]. 中国公路学报, 2006, 19(2): 31-35.

    ZHANG Zhi-xiang, WU Jian-hao. Experimental research on fatigue characteristics of RAP mixtures[J]. China Journal of Highway and Transport, 2006, 19(2): 31-35.
    [33] SHU X, HUANG B S, VUKOSAVLJEVIC D. Laboratory evaluation of fatigue characteristics of recycled asphalt mixture[J]. Construction and Building Materials, 2008, 22(7): 1323-1330. doi: 10.1016/j.conbuildmat.2007.04.019
    [34] 赵斌. 沥青混合料热再生机理及技术性能研究. 西安: 长安大学, 2012.

    ZHAO Bin. Study on recycling mechanism and technical property of the plant hot asphalt mixture. Xi'an: Chang'an University, 2012.
    [35] ZAUMANIS M, MALLICK R B, POULIKAKOS L, et al. Influence of six rejuvenators on the performance properties of Reclaimed Asphalt Pavement (RAP) binder and 100% recycled asphalt mixtures[J]. Construction and Building Materials, 2014, 71: 538-550. doi: 10.1016/j.conbuildmat.2014.08.073
    [36] FAN X Z, QIAO Y H, ZHANG J Z, et al. Towards the high RAP dosage obtained by refined processing influence on comprehensive performance of recycled asphalt mixture[J]. Construction and Building Materials, 2024, 452: 138885. doi: 10.1016/j.conbuildmat.2024.138885
    [37] NANDA H, SIDDAGANGAIAH A K. Effect of RAP fractionation and dosage on design and mechanical behaviour of cold asphalt mixes[J]. Construction and Building Materials, 2024, 422: 135773. doi: 10.1016/j.conbuildmat.2024.135773
    [38] MONTAÑEZ J, CARO S, CARRIZOSA D, et al. Variability of the mechanical properties of Reclaimed Asphalt Pavement (RAP) obtained from different sources[J]. Construction and Building Materials, 2020, 230: 116968. doi: 10.1016/j.conbuildmat.2019.116968
    [39] 王晨. 多来源RAP料性能评价及超高比例厂拌热再生利用技术研究. 南京: 东南大学, 2021.

    WANG Chen. Performance evaluation of multi-source rap materials and technology for ultra-high proportion hot recycling in plant. Nanjing: Southeast University, 2021.
    [40] 钟昆志. 旧沥青路面材料精细化再生利用技术研究. 南京: 东南大学, 2022.

    ZHONG Kun-zhi. Research on refinement recycling tech-nology of reclaimed asphalt pavement. Nanjing: South-east University, 2022.
    [41] PEI Z S, YI J Y, XU M, et al. Exploration of the design theory of crack-resistant rejuvenator for warm-mix recycled asphalt mixtures with high RAP contents[J]. Journal of Cleaner Production, 2023, 388: 135855. doi: 10.1016/j.jclepro.2023.135855
    [42] 许勐. 基于分子扩散融合机制的沥青再生剂设计与性能验证. 哈尔滨: 哈尔滨工业大学, 2019.

    XU Meng. Design and performance verification of rejuvenator based on molecular diffusion fusion mechanism. Harbin: Harbin Institute of Technology, 2019.
    [43] 周健. 大旧料掺量再生沥青混合料的高模量化设计理论与性能研究. 南京: 东南大学, 2020.

    ZHOU Jian. Study on high modulus design theory and performance of recycled asphalt mixture with large amount of RAP. Nanjing: Southeast University, 2020.
    [44] 周洲. 不同RAP料掺量热再生改性沥青混合料耐久性能研究. 南京: 东南大学, 2015.

    ZHOU Zhou. Durability Study of Hot Recycled Modified Asphalt Mixtures with Different RAP Contents. Nanjing: Southeast University, 2015.
    [45] CUI P D, WU S P, XIAO Y, et al. Environmental perfor-mance and functional analysis of chip seals with recycled basic oxygen furnace slag as aggregate[J]. Journal of Hazardous Materials, 2021, 405: 124441. doi: 10.1016/j.jhazmat.2020.124441
    [46] WU S P, XUE Y J, YE Q S, et al. Utilization of steel slag as aggregates for stone mastic asphalt (SMA) mixtures[J]. Building and Environment, 2007, 42(7): 2580-2585. doi: 10.1016/j.buildenv.2006.06.008
    [47] 高振鑫, 申爱琴, 翟超伟, 等. 钢渣沥青混合料体积参数测定与水稳定性影响机理[J]. 交通运输工程学报, 2018, 18(2): 1-10. doi: 10.19818/j.cnki.1671-1637.2018.02.001

    GAO Zhen-xin, SHEN Ai-qin, ZHAI Chao-wei, et al. Determination of volumetric parameters and impacting mechanism of water stability for steel slag asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2018, 18(2): 1-10. doi: 10.19818/j.cnki.1671-1637.2018.02.001
    [48] LIU J Z, CHEN S H, LIU Q, et al. Influence of steel slag incorporation on internal skeletal contact characteristics within asphalt mixture[J]. Construction and Building Materials, 2022, 352: 129073. doi: 10.1016/j.conbuildmat.2022.129073
    [49] XU H Q, ZOU Y X, AIREY G, et al. Interfacial characte-ristics between bitumen and corrosion products on steel slag surface from molecular scale[J]. Construction and Building Materials, 2024, 417: 135324. doi: 10.1016/j.conbuildmat.2024.135324
    [50] ZHAO W X, WEN W, LI H R, et al. Research on the performance of asphalt mixture with acid-treated steel slag based on microscopic properties[J]. Construction and Building Materials, 2024, 455: 139134. doi: 10.1016/j.conbuildmat.2024.139134
    [51] CHEN Z W, GONG Z L, JIAO Y Y, et al. Moisture stability improvement of asphalt mixture considering the surface characteristics of steel slag coarse aggregate[J]. Construction and Building Materials, 2020, 251: 118987. doi: 10.1016/j.conbuildmat.2020.118987
    [52] ZHANG Z, ZHENG X G, LI J Y, et al. Mechanism of reinforced interfacial adhesion between steel slag and highly devulcanized waste rubber modified asphalt and its influence on the volume stability in steel slag asphalt mixture[J]. Construction and Building Materials, 2024, 447: 138129. doi: 10.1016/j.conbuildmat.2024.138129
    [53] WANG L, CHEN L, LI Y X, et al. Adhesion characteristics of warm-mix crumb rubber-modified asphalt-steel slag inter-face under water erosion[J]. Journal of Materials in Civil Engineering, 2024, 36(9): 04024270. doi: 10.1061/JMCEE7.MTENG-17981
    [54] ZHANG C, YU H N, QIAN G P, et al. Study on the effect of limestone replacement by steel slag on the interface interaction between asphalt and aggregate[J]. Construction and Building Materials, 2025, 471: 140709. doi: 10.1016/j.conbuildmat.2025.140709
    [55] PARANAVITHANA S, MOHAJERANI A. Effects of recycled concrete aggregates on properties of asphalt concrete[J]. Resources, Conservation and Recycling, 2006, 48(1): 1-12.
    [56] 张涛. 再生骨料改性及其在沥青混合料中的应用. 武汉: 武汉理工大学, 2010.

    ZHANG Tao. Modification of recycled aggregate and its application in asphalt mixtures. Wuhan: Wuhan Univer-sity of Technology, 2010.
    [57] HOU Y Q, JI X P, SU X L, et al. Laboratory investigations of activated recycled concrete aggregate for asphalt treated base[J]. Construction and Building Materials, 2014, 65: 535-542. doi: 10.1016/j.conbuildmat.2014.04.115
    [58] WU S H, MUHUNTHAN B, WEN H F. Investigation of effectiveness of prediction of fatigue life for hot mix asphalt blended with recycled concrete aggregate using monotonic fracture testing[J]. Construction and Building Materials, 2017, 131: 50-56. doi: 10.1016/j.conbuildmat.2016.11.045
    [59] 朱继青. 地震建筑废弃物制备的沥青混合料的性能研究. 武汉: 武汉理工大学, 2012.

    ZHU Ji-qing. Investigation on properties of asphalt mixture containing demolition waste obtained from earthquake-damaged buildings. Wuhan: Wuhan University of Tech-nology, 2012.
    [60] PASANDÍN A R, PÉREZ I. Mechanical properties of hot-mix asphalt made with recycled concrete aggregates coated with bitumen emulsion[J]. Construction and Building Materials, 2014, 55: 350-358. doi: 10.1016/j.conbuildmat.2014.01.053
    [61] ALBAYATI A, WANG Y, WANG Y, et al. A sustainable pavement concrete using warm mix asphalt and hydrated lime treated recycled concrete aggregates[J]. Sustainable Materials and Technologies, 2018, 18: e00081. doi: 10.1016/j.susmat.2018.e00081
    [62] KAREEM A I, NIKRAZ H, ASADI H. Performance of hot-mix asphalt produced with double coated recycled concrete aggregates[J]. Construction and Building Materials, 2019, 205: 425-433. doi: 10.1016/j.conbuildmat.2019.02.023
    [63] 侯月琴. 水泥混凝土再生集料在沥青路面中的应用研究. 西安: 长安大学, 2014.

    HOU Yue-qin. Research on application of recycled cement concrete aggregate in asphalt pavement. Xi'an: Chang'an University, 2014.
    [64] 郭学东, 李颖松, 郭威, 等. 基于中心复合设计法的油页岩废渣改良OGFC抗春融水损性能[J]. 吉林大学学报(工学版), 2019, 49(1): 73-78.

    GUO Xue-dong, LI Ying-song, GUO Wei, et al. Spring-thawing stability of OGFC modified by oil shale waste based on central composite design method[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(1): 73-78.
    [65] GUO W, XU H Y, YU Y, et al. Enhancement mechanism of oil shale waste filled asphalt mixtures based on oil adsorption and storage behavior[J]. Construction and Building Materials, 2025, 479: 141473. doi: 10.1016/j.conbuildmat.2025.141473
    [66] 李伟, 程培峰, 李国栋. 煤矸石沥青混合料路用性能的试验[J]. 东北林业大学学报, 2009, 37(6): 54-55, 58.

    LI Wei, CHENG Pei-feng, LI Guo-dong. Experiment on road performance of asphalt mixture of coal gangue[J]. Journal of Northeast Forestry University, 2009, 37(6): 54-55, 58.
    [67] LI Z X, FANG C Z, GUO T T, et al. Study on road performance of asphalt mixture based on surface modification of coal gangue[J]. Case Studies in Construction Materials, 2024, 21: e03743. doi: 10.1016/j.cscm.2024.e03743
    [68] ZHANG F, HU C B. The research for crumb rubber/waste plastic compound modified asphalt[J]. Journal of Thermal Analysis and Calorimetry, 2016, 124(2): 729-741. doi: 10.1007/s10973-015-5198-4
    [69] YAO L Y, LENG Z, LAN J T, et al. Environmental and economic assessment of collective recycling waste plastic and reclaimed asphalt pavement into pavement construction: A case study in Hong Kong[J]. Journal of Cleaner Production, 2022, 336: 130405. doi: 10.1016/j.jclepro.2022.130405
    [70] YANG C, WU S P, CUI P D, et al. Performance characte-rization and enhancement mechanism of recycled asphalt mixtures involving high RAP content and steel slag[J]. Journal of Cleaner Production, 2022, 336: 130484. doi: 10.1016/j.jclepro.2022.130484
    [71] YAO Y Q, GAO J, YANG J G, et al. Sustainable asphalt concrete containing RAP and coal gangue aggregate: Performance, costs, and environmental impact[J]. Journal of Renewable Materials, 2022, 10(8): 2263-2285. doi: 10.32604/jrm.2022.018911
    [72] LIU M J, LUO S, HUANG W, et al. Enabling high-RAP-content recycling in asphalt pavements through epoxy modification: Durability and life cycle assessment[J]. Sustainable Materials and Technologies, 2025, 45: e01519.
    [73] SUN J, HUANG W, WANG X M, et al. Epoxy steel slag asphalt mixture: Achieving breakthrough in pavement performance and efficient waste resource utilization[J]. Chemical Engineering Journal, 2025, 520: 166262. doi: 10.1016/j.cej.2025.166262
    [74] SONG Y, XU H Q, WU S P, et al. High-quality utilization of reclaimed asphalt pavement (RAP) in asphalt mixture with the enhancement of steel slag and epoxy asphalt[J]. Construction and Building Materials, 2024, 445: 137963. doi: 10.1016/j.conbuildmat.2024.137963
    [75] ZHAO W T, YANG Q. Life-cycle assessment of sustainable pavement based on the coordinated application of recycled asphalt pavement and solid waste: Environment and economy[J]. Journal of Cleaner Production, 2024, 434: 140203. doi: 10.1016/j.jclepro.2023.140203
    [76] ZHAO W T, QIAN G P, YANG Q. Sustainable pavement design: A comprehensive study on incorporating 100% recycled asphalt pavement and utilizing 100% industrial solid waste[J]. Construction and Building Materials, 2025, 462: 139972. doi: 10.1016/j.conbuildmat.2025.139972
    [77] PEIRIS D, GUNASEKARA C, LAW D W, et al. Impact of treatment methods on recycled concrete aggregate perfor-mance: A comprehensive review[J]. Environmental Science and Pollution Research, 2025, 32(24): 14405-14438. doi: 10.1007/s11356-025-36497-y
    [78] WANG F S, HOFF I, YANG F, et al. Comparative assess-ments for environmental impacts from three advanced asphalt pavement construction cases[J]. Journal of Cleaner Production, 2021, 297: 126659. doi: 10.1016/j.jclepro.2021.126659
    [79] BHARATH G, REDDY K S, TANDON V, et al. Aggregate gradation effect on the fatigue performance of recycled asphalt mixtures[J]. Road Materials and Pavement Design, 2021, 22(1): 165-184. doi: 10.1080/14680629.2019.1620116
    [80] SWATHI M, ANDIYAPPAN T, GUDURU G, et al. Design of asphalt mixes with steel slag aggregates using the Bailey method of gradation selection[J]. Construction and Building Materials, 2021, 279: 122426. doi: 10.1016/j.conbuildmat.2021.122426
    [81] 吴军, 夏海廷, 郭荣鑫, 等. 基于改进多点支撑骨架状态模型的热再生沥青混合料配合比设计[J]. 材料导报, 2024, 38(增1): 178-184.

    WU Jun, XIA Hai-ting, GUO Rong-xin, et al. Hot recycled asphalt mix proportion design based on improved state model of multi-point support skeleton[J]. Materials Reports, 2024, 38(S1): 178-184.
    [82] 李正中, 魏如喜, 宋晓燕, 等. 基于GTM法的温拌胶粉改性沥青混合料设计研究[J]. 建筑材料学报, 2013, 16(6): 968-974.

    LI Zheng-zhong, WEI Ru-xi, SONG Xiao-yan, et al. Design and research on the warm-mix rubber-modified asphalt mixture based on the GTM method[J]. Journal of Building Materials, 2013, 16(6): 968-974.
    [83] LIU Z M, SUN L J, ZHAI J H, et al. A review of design methods for cold in-place recycling asphalt mixtures: Design processes, key parameters, and evaluation[J]. Journal of Cleaner Production, 2022, 370: 133530. doi: 10.1016/j.jclepro.2022.133530
    [84] ZAUMANIS M, POULIKAKOS L, ARRAIGADA M, et al. Hot asphalt recycling in cold climate: Performance-based mixture design and a test section in the Swiss Alps[J]. Road Materials and Pavement Design, 2025, 26(8): 1914-1950. doi: 10.1080/14680629.2024.2433166
    [85] NING H, CAI J, DENG B, et al. Development of modified balanced mix design method for cold recycled asphalt mixture[J]. Case Studies in Construction Materials, 2025, 22: e04784. doi: 10.1016/j.cscm.2025.e04784
    [86] SUN Y, ZHANG X, CHEN J J, et al. Mixing design and performance of porous asphalt mixtures containing solid waste[J]. Case Studies in Construction Materials, 2024, 21: e03644. doi: 10.1016/j.cscm.2024.e03644
    [87] 郭乃胜, 尤占平, 赵颖华, 等. 温拌再生沥青混合料耐久性能[J]. 中国公路学报, 2014, 27(8): 17-22.

    GUO Nai-sheng, YOU Zhan-ping, ZHAO Ying-hua, et al. Durability of warm mix asphalt containing recycled asphalt mixtures[J]. China Journal of Highway and Transport, 2014, 27(8): 17-22.
    [88] 季节, 索智, 许鹰, 等. SMA温拌再生沥青混合料性能试验[J]. 中国公路学报, 2013, 26(5): 28-33.

    JI Jie, SUO Zhi, XU Ying, et al. Experimental research on performance of warm-recycled mixture asphalt with SMA[J]. China Journal of Highway and Transport, 2013, 26(5): 28-33.
    [89] KUNA K, AIREY G, THOM N. Mix design considerations of foamed bitumen mixtures with reclaimed asphalt pavement material[J]. International Journal of Pavement Engineering, 2017, 18(10): 902-915. doi: 10.1080/10298436.2015.1126271
    [90] LIN J T, HUO L, XU F, et al. Development of microstructure and early-stage strength for 100% cold recycled asphalt mixture treated with emulsion and cement[J]. Construction and Building Materials, 2018, 189: 924-933. doi: 10.1016/j.conbuildmat.2018.09.064
    [91] LIU W H, LI H, ZHU H M, et al. The interfacial adhesion performance and mechanism of a modified asphalt-steel slag aggregate[J]. Materials, 2020, 13(5): 1180. doi: 10.3390/ma13051180
    [92] ALQARNI A S, ABBAS H, AL-SHWIKH K M, et al. Treatment of recycled concrete aggregate to enhance concrete performance[J]. Construction and Building Materials, 2021, 307: 124960. doi: 10.1016/j.conbuildmat.2021.124960
    [93] GAO C, HUANG L, YAN L B, et al. Mechanical properties of recycled aggregate concrete modified by nano-particles[J]. Construction and Building Materials, 2020, 241: 118030. doi: 10.1016/j.conbuildmat.2020.118030
    [94] ZHANG J K, SHI C J, LI Y K, et al. Performance enhan-cement of recycled concrete aggregates through carbonation[J]. Journal of Materials in Civil Engineering, 2015, 27(11): 04015029. doi: 10.1061/(ASCE)MT.1943-5533.0001296
    [95] WANG X F, DU G H, CAI L M, et al. Effect of crystallizer treatment on chloride diffusion and microstructure of recycled aggregate concrete[J]. Construction and Building Materials, 2022, 321: 126273. doi: 10.1016/j.conbuildmat.2021.126273
    [96] PANGHAL H, KUMAR A. Enhancing concrete performance: Surface modification of recycled coarse aggregates for sustainable construction[J]. Construction and Building Materials, 2024, 411: 134432. doi: 10.1016/j.conbuildmat.2023.134432
    [97] OUYANG K, LIU J H, LIU S H, et al. Influence of pre-treatment methods for recycled concrete aggregate on the performance of recycled concrete: A review[J]. Resources, Conservation and Recycling, 2023, 188: 106717. doi: 10.1016/j.resconrec.2022.106717
    [98] KATO K, XIN Y Z, HITOMI T, et al. Surface modification of fly ash by mechano-chemical treatment[J]. Ceramics International, 2019, 45(1): 849-853. doi: 10.1016/j.ceramint.2018.09.254
    [99] YANG Y F, GAI G S, CAI Z F, et al. Surface modification of purified fly ash and application in polymer[J]. Journal of Hazardous Materials, 2006, 133(1/2/3): 276-282.
    [100] XUE X, LIU Y L, DAI J G, et al. Inhibiting efflorescence formation on fly ash-based geopolymer via silane surface modification[J]. Cement and Concrete Composites, 2018, 94: 43-52. doi: 10.1016/j.cemconcomp.2018.08.013
    [101] HOY M, HORPIBULSUK S, ARULRAJAH A. Strength development of recycled asphalt pavement-fly ash geopolymer as a road construction material[J]. Construction and Building Materials, 2016, 117: 209-219. doi: 10.1016/j.conbuildmat.2016.04.136
    [102] LIU S, JIN J, YU H Y, et al. Performance enhancement of modified asphalt via coal gangue with microstructure control[J]. Construction and Building Materials, 2023, 367: 130287. doi: 10.1016/j.conbuildmat.2022.130287
    [103] LI J R, CAO Y S, SHA A M, et al. Prospective application of coal gangue as filler in fracture-healing behavior of asphalt mixture[J]. Journal of Cleaner Production, 2022, 373: 133738. doi: 10.1016/j.jclepro.2022.133738
    [104] WEI Z Y, JIA Y S, WANG S Q, et al. Utilization of iron ore tailing as an alternative mineral filler in asphalt mastic: High-temperature performance and environmental aspects[J]. Journal of Cleaner Production, 2022, 335: 130318. doi: 10.1016/j.jclepro.2021.130318
    [105] LI J R, SHA A M, WANG Z J, et al. Investigation of the self-healing, road performance and cost-benefit effects of an iron tailing/asphalt mixture in pavement[J]. Construction and Building Materials, 2024, 422: 135788. doi: 10.1016/j.conbuildmat.2024.135788
    [106] WEI Z Y, JIA Y S, WANG S Q, et al. Influence of iron tailing filler on rheological behavior of asphalt mastic[J]. Construction and Building Materials, 2022, 352: 129047. doi: 10.1016/j.conbuildmat.2022.129047
    [107] LI S, ZHANG Z X, SI C D, et al. Evaluation of the rheological properties of asphalt mastic incorporating iron tailings filler as an alternative to limestone filler[J]. Journal of Cleaner Production, 2025, 486: 144444. doi: 10.1016/j.jclepro.2024.144444
    [108] WANG H B, LI H, ZHANG H J, et al. Experimental study on the aging behavior of modified asphalt with different types of fine solid wastes under different aging conditions[J]. Construction and Building Materials, 2021, 291: 123308. doi: 10.1016/j.conbuildmat.2021.123308
    [109] ZHANG J Z, LI P Z, WANG K, et al. Adhesive behavior and pavement performance of asphalt mixtures incorporating red mud as a filler substitute[J]. Construction and Building Materials, 2021, 298: 123855. doi: 10.1016/j.conbuildmat.2021.123855
    [110] CHAVEZ F, MARCOBAL J, GALLEGO J. Laboratory evaluation of the mechanical properties of asphalt mixtures with rubber incorporated by the wet, dry, and semi-wet process[J]. Construction and Building Materials, 2019, 205: 164-174. doi: 10.1016/j.conbuildmat.2019.01.159
    [111] WANG H P, APOSTOLIDIS P, ZHU J Q, et al. The role of thermodynamics and kinetics in rubber-bitumen systems: A theoretical overview[J]. International Journal of Pavement Engineering, 2021, 22(14): 1785-1800. doi: 10.1080/10298436.2020.1724289
    [112] LI H B, ZHOU L C, SUN J M, et al. Analysis of the influence of production method, plastic content on the basic performance of waste plastic modified asphalt[J]. Polymers, 2022, 14(20): 4350. doi: 10.3390/polym14204350
    [113] IBRAHIM H, MARINI S, DESIDERY L, et al. Recycled plastics and rubber for green roads: The case study of devulcanized tire rubber and waste plastics compounds to enhance bitumen performance[J]. Resources, Conservation & Recycling Advances, 2023, 18: 200157.
    [114] LIN J, GUO Z X, HONG B, et al. Using recycled waste glass fiber reinforced polymer (GFRP) as filler to improve the performance of asphalt mastics[J]. Journal of Cleaner Production, 2022, 336: 130357. doi: 10.1016/j.jclepro.2022.130357
    [115] LAN T H, WANG B Z, ZHANG J C, et al. Utilization of waste wind turbine blades in performance improvement of asphalt mixture[J]. Frontiers in Materials, 2023, 10: 1164693. doi: 10.3389/fmats.2023.1164693
    [116] YANG Q L, FAN Z P, YANG X, et al. Recycling waste fiber-reinforced polymer composites for low-carbon asphalt concrete: The effects of recycled glass fibers on the durability of bituminous composites[J]. Journal of Cleaner Production, 2023, 423: 138692. doi: 10.1016/j.jclepro.2023.138692
    [117] ZHANG T L, HU K, CHEN Y J, et al. Feasibility and environmental assessment of introducing waste polyurethane from wind turbine blades as a modifier for asphalt[J]. Construction and Building Materials, 2024, 446: 138052. doi: 10.1016/j.conbuildmat.2024.138052
    [118] 段珍华, 张韦, 朱仄平, 等. 退役风机叶片的回收与资源化应用研究进展[J]. 硅酸盐通报, 2025, 44(4): 1267-1275.

    DUAN Zhen-hua, ZHANG Wei, ZHU Ze-ping, et al. Research progress on recycling and resource application of retired wind turbine blades[J]. Bulletin of the Chinese Ceramic Society, 2025, 44(4): 1267-1275.
    [119] TAN Z F, GUO Y Q, HU G W, et al. Upcycling waste wind turbine blades into fiber-reinforced asphalt mortar: A chemical recycling approach and performance assessment[J]. Construction and Building Materials, 2025, 489: 142352. doi: 10.1016/j.conbuildmat.2025.142352
    [120] LUO Y, HUANG J S, WANG Y J, et al. Enhancing the properties and engineering performance of asphalt binders and mixtures with physicochemically treated waste wind turbine blades[J]. Construction and Building Materials, 2025, 473: 141023. doi: 10.1016/j.conbuildmat.2025.141023
    [121] OU L, ZHU H Z, XU Y L, et al. Gray correlation entropy analysis of zero shear viscosity and high-temperature rheological parameters of phosphogypsum-modified asphalt[J]. Case Studies in Construction Materials, 2022, 17: e01448. doi: 10.1016/j.cscm.2022.e01448
    [122] GUO W, GU K P, XU H Y, et al. Properties enhancement of asphalt mortar incorporating phosphogypsum based on surface activation[J]. Case Studies in Construction Materials, 2025, 22: e04251.
    [123] YIN P, PAN B F, LI Z H, et al. Multi-scale investigation of the adhesion properties of phosphogypsum whisker composite modified asphalt[J]. Construction and Building Materials, 2024, 420: 135608. doi: 10.1016/j.conbuildmat.2024.135608
    [124] ZHANG X Q, LI J, OU L, et al. Preparation of calcium sulphate whiskers from phosphogypsum for asphalt modification: Rheological properties and microscopic mecha-nisms[J]. International Journal of Pavement Engineering, 2024, 25(1): 1-14.
    [125] YIN P, PAN B F, LI Z H, et al. Effect of surfactant modified phosphogypsum whisker on service performance of asphalt based on multi-scale experiments[J]. Journal of Cleaner Production, 2024, 464: 142774. doi: 10.1016/j.jclepro.2024.142774
    [126] CHEN S C, ZOU Y X, LIU Q T, et al. Synthesis of hydrotalcite from phosphate tailings and its effect on the anti-ultraviolet aging properties of asphalt binder[J]. Journal of Materials in Civil Engineering, 2022, 34(9): 04022230. doi: 10.1061/(ASCE)MT.1943-5533.0004385
    [127] 董泽蛟, 刘美丽, 郑好, 等. 考虑横观各向同性特性的沥青路面动力学分析[J]. 中国公路学报, 2012, 25(5): 18-23.

    DONG Ze-jiao, LIU Mei-li, ZHENG Hao, et al. Dynamic mechanical analysis of asphalt pavement based on cross-isotropic properties[J]. China Journal of Highway and Trans-port, 2012, 25(5): 18-23.
    [128] YOU L Y, XIAO Z, QUAN W W, et al. Influence of aniso-tropy on structural dynamic response, from the views of mechanism, analysis method, and implications for pavement design[J]. International Journal of Pavement Engineering, 2025, 26(1): 1-21.
    [129] 杨涛, 郑健龙, 关宏信, 等. 考虑材料正交各向异性时的沥青路面结构力学性能[J]. 中南大学学报(自然科学版), 2016, 47(12): 4283-4291.

    YANG Tao, ZHENG Jian-long, GUAN Hong-xin, et al. Mechanical properties of asphalt pavement considering orthotropy of each layer materials[J]. Journal of Central South University (Science and Technology), 2016, 47(12): 4283-4291.
    [130] WANG H, AL-QADI I L. Importance of nonlinear anisotropic modeling of granular base for predicting maximum viscoelastic pavement responses under moving vehicular loading[J]. Journal of Engineering Mechanics, 2013, 139(1): 29-38. doi: 10.1061/(ASCE)EM.1943-7889.0000465
    [131] SMITH S, BRAHAM A. Comparing layer types for the use of pavement ME for asphalt emulsion full depth reclamation design[J]. Construction and Building Materials, 2018, 158: 481-489. doi: 10.1016/j.conbuildmat.2017.10.054
    [132] 胡宗文. 冷再生沥青路面材料性能及结构组合研究. 西安: 长安大学, 2012.

    HU Zong-wen. The study of material properties and structure combination of cold recycled asphalt pavement. Xi'an: Chang'an University, 2012.
    [133] 祝谭雍. 基于再生沥青混合料性能特点的再生路面设计研究. 南京: 东南大学, 2017.

    ZHU Tan-yong. Structural analysis and design for recycled asphalt pavement based on the performance characteristics of recyled asphalt mixture. Nanjing: Southeast University, 2017.
    [134] 冀欣, 盛燕萍, 路再红, 等. 掺加钢渣的半刚性基层材料性能[J]. 长安大学学报(自然科学版), 2021, 41(4): 21-31.

    JI Xin, SHENG Yan-ping, LU Zai-hong, et al. Properties of semi-rigid base material with steel slag[J]. Journal of Chang'an University (Natural Science Edition), 2021, 41(4): 21-31.
    [135] 都伟, 张明欣, 王彦敏, 等. 废旧沥青混合料在路面基层中的应用研究进展[J]. 材料导报, 2024, 38(增1): 298-302.

    DU Wei, ZHANG Ming-xin, WANG Yan-min, et al. Research progress on the application of waste asphalt mixture in pavement base layer[J]. Materials Reports, 2024, 38(S1): 298-302.
    [136] 马涛, 栾英成, 何亮, 等. 乳化沥青与泡沫沥青冷再生技术发展综述[J]. 交通运输工程学报, 2023, 23(2): 1-23. doi: 10.19818/j.cnki.1671-1637.2023.02.001

    MA Tao, LUAN Ying-cheng, HE Liang, et al. Review on cold recycling technology development of emulsified asphalt and foamed asphalt[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 1-23. doi: 10.19818/j.cnki.1671-1637.2023.02.001
    [137] LI X Q, WU S P, WANG F S, et al. Quantitative assess-ments of GHG and VOCs emissions of asphalt pavement contained steel slag[J]. Construction and Building Materials, 2023, 369: 130606. doi: 10.1016/j.conbuildmat.2023.130606
    [138] 梁波, 张海涛, 梁缘, 等. 温拌沥青技术研究综述[J]. 交通运输工程学报, 2023, 23(2): 24-46. doi: 10.19818/j.cnki.1671-1637.2023.02.002

    LIANG Bo, ZHANG Hai-tao, LIANG Yuan, et al. Review on warm mixing asphalt technology[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 24-46. doi: 10.19818/j.cnki.1671-1637.2023.02.002
    [139] MARTINHO F C G, PICADO-SANTOS L G, CAPITÃO S D. Influence of recycled concrete and steel slag aggregates on warm-mix asphalt properties[J]. Construction and Building Materials, 2018, 185: 684-696. doi: 10.1016/j.conbuildmat.2018.07.041
    [140] PASETTO M, BALIELLO A, GIACOMELLO G, et al. Sustainable solutions for road pavements: A multi-scale characterization of warm mix asphalts containing steel slags[J]. Journal of Cleaner Production, 2017, 166: 835-843. doi: 10.1016/j.jclepro.2017.07.212
    [141] ZHOU X W, WANG Z J, GUO H Y, et al. Steel slag aggregate property improvement in cold mixed asphalt mixtures through surface modification treatment[J]. Journal of Cleaner Production, 2024, 477: 143889. doi: 10.1016/j.jclepro.2024.143889
    [142] 周雄, 武建民, 杨永利, 等. 钢渣沥青混合料碾压温度场[J]. 筑路机械与施工机械化, 2019, 36(3): 79-85.

    ZHOU Xiong, WU Jian-min, YANG Yong-li, et al. Rolling temperature field of steel slag asphalt mixture[J]. Road Machinery & Construction Mechanization, 2019, 36(3): 79-85.
    [143] 何亮, 詹程阳, 吕松涛, 等. 钢渣沥青混合料应用现状[J]. 交通运输工程学报, 2020, 20(2): 15-33. doi: 10.19818/j.cnki.1671-1637.2020.02.002

    HE Liang, ZHAN Cheng-yang, LYU Song-tao, et al. Appli-cation status of steel slag asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 15-33. doi: 10.19818/j.cnki.1671-1637.2020.02.002
    [144] LIU Z Z, FENG T T, ZHU X Y, et al. Bird's-eye view of recycled solid wastes in road engineering[J]. Journal of Road Engineering, 2024, 4(2): 93-150. doi: 10.1016/j.jreng.2024.05.002
    [145] YAN T Y, MENG Y J, LUO X W, et al. Application of aluminum industry solid waste in asphalt mixtures and its impact on performance: Current research and future perspec-tives[J]. Journal of Road Engineering, 2025, 5(4): 554-571. doi: 10.1016/j.jreng.2025.06.002
    [146] OLUWASOLA E A, HAININ M R, AZIZ M M A. Compa-rative evaluation of dense-graded and gap-graded asphalt mix incorporating electric arc furnace steel slag and copper mine tailings[J]. Journal of Cleaner Production, 2016, 122: 315-325. doi: 10.1016/j.jclepro.2016.02.051
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  26
  • HTML全文浏览量:  13
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-31
  • 录用日期:  2025-09-26
  • 修回日期:  2025-09-16
  • 刊出日期:  2026-01-28

目录

    /

    返回文章
    返回