Citation: | HE Si-hua, YANG Shao-qing, SHI Ai-guo, LI Tian-wei. Ship target detection algorithm on sea surface based on block chaos feature of image sequence[J]. Journal of Traffic and Transportation Engineering, 2009, 9(1): 73-76. doi: 10.19818/j.cnki.1671-1637.2009.01.015 |
[1] |
LEE D S. Effective gaussian mixture learning for video back-ground subtraction[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 827-832. doi: 10.1109/TPAMI.2005.102
|
[2] |
SU Ding, ZHANG Qi-heng, XIE Sheng-hua. Segmentation algorithmfor multi-targetsin sea surf[J]. Computer Engineering and Applications, 2006, 43(16): 12-14. (in Chinese) doi: 10.3321/j.issn:1002-8331.2006.16.005
|
[3] |
LINSan-hu, ZHU Hong, ZHAO Yi-gong. Study of sea clutter chaotic dynamics[J]. Systems Engineering and Electronics, 2004, 26(2): 178-180. (in Chinese) doi: 10.3321/j.issn:1001-506X.2004.02.011
|
[4] |
JI ANG Bin, WANG Hong-qiang, LI Xiang, et al. The anal-ysis of chaos and fractal characteristic based on the observed sea clutter of S-band radar[J]. Journal of Electronics andInformation Technology, 2007, 29(8): 1809-1812. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZYX200708007.htm
|
[5] |
HE Wu-fu, WANG Guo-hong, LI UJie. Target detection in sea clutter environment based on chaos[J]. Systems Engi-neering and Electronics, 2005, 27(6): 1016-1020. (in Chinese) doi: 10.3321/j.issn:1001-506X.2005.06.016
|
[6] |
WOLF A, SWIFTJ B, SWI NNEY HL, et al. Determining Lyapunov exponents froma ti me series[J]. Physica D, 1985, 16: 285-317. doi: 10.1016/0167-2789(85)90011-9
|
[7] |
ROSENSTEI N M T, COLLI NS J J, DE LUCA CJ. Aprac-tical method for calculating largest Lyapunov exponents from small data sets[J]. Physica D, 1993, 65: 117-134. doi: 10.1016/0167-2789(93)90009-P
|
[8] |
KENNEL MB, BROWN R, ABARBANEL HDI. Determi-ning embedding di mension for phase-space reconstruction using a geometrical construction[J]. Physical Review A, 1992, 45(6): 3403-3411. doi: 10.1103/PhysRevA.45.3403
|
[9] |
RICHTER M, SCHREIBER T. Phase space embedding of electrocardiograms[J]. Physical Review E, 1998, 58(5): 6392-6398. doi: 10.1103/PhysRevE.58.6392
|
[10] |
LIEBERT W, SCHUSTER H G. Proper choice of the ti me delay for the analysis of chaotic ti me series[J]. Physics Let-ters A, 1989, 142: 107-128. doi: 10.1016/0375-9601(89)90169-2
|
[11] |
TAKENS F. Detecting strange attractors in turbulence[J]. Lecture Notes in Mathematics, 1981, 898: 366-381.
|
[12] |
GRASSBERGER P, PROCACCI AI. Measuring the strange-ness of strange attractors[J]. Physica D, 1983, 9: 189-208. doi: 10.1016/0167-2789(83)90298-1
|
[13] |
ABRAHAM N B, ALBANO A M, DAS B, et al. Calculating the di mension of attractors fromsmall data sets[J]. Physics Letters A, 1986, 114: 217-221. doi: 10.1016/0375-9601(86)90210-0
|
[14] |
ZENG X, EYKHOLT R, PIELKE R A. Esti matingthe Lya-punov-exponent spectrumfromshort ti me series of lowpreci-sion[J]. Physical Review Letters, 1991, 66(25): 3229-3232.
|
[15] |
ECKMANNJ P, KAMPHORST S O, RUELLE D, et al. Liapunov exponents fromti me series[J]. Physical Review A, 1986, 34(6): 4971-4979. doi: 10.1103/PhysRevA.34.4971
|
[16] |
ABARBANEL H D I, BROWN R, KENNEL M B. Local Lyapunov exponents computed from observed data[J]. Journal of Nonlinear Science, 1992, 2: 343-365.
|