Citation: | ZHANG Li-min, ZHANG Wei-hua, DUAN He-peng. Physical parameter identification method of vibration system based on minimum correction value method[J]. Journal of Traffic and Transportation Engineering, 2009, 9(3): 53-55. doi: 10.19818/j.cnki.1671-1637.2009.03.010 |
[1] |
LI ANG Yan-chun, NI U Tie-jun. A method for identifyingphysics parameters of vibration system by using the transferfunction[J]. Journal of Vibration and Shock, 1988, 7 (1): 36-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ198801004.htm
|
[2] |
XU Yang-sheng, CHEN Zhong-yi. Inverse eigenvalue problems and identification of physical parameters in vibration system[J]. Chinese Journal of Applied Mechanics, 1985, 2 (4): 83-93, 126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX198504008.htm
|
[3] |
WANG Da-jun. Inverse eigenvalue problems in structuraldynamics[J]. Journal of Vibration and Shock, 1988, 7 (2): 31-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ198802007.htm
|
[4] |
WANG De-ming, GAI Bing-zheng. Anumerical method of aproblemfor determining the structure parameter[J]. Journalof Harbin Institute of Technology, 2006, 38 (5): 805-807. (in Chinese) doi: 10.3321/j.issn:0367-6234.2006.05.039
|
[5] |
DAI Hua. Stiffness matrix correction using test data[J]. Acta Aeronautica et Astronautica Sinica, 1994, 15 (9): 1091-1094. (in Chinese) doi: 10.3321/j.issn:1000-6893.1994.09.013
|
[6] |
BARUCH M. Mass matrix correction using anincomplete setof measured models[J]. AI AAJournal, 1979, 17 (10): 1147-1148.
|
[7] |
ALEX B, NAGY E J. I mprovement of a large analyticalmodel using test data[J]. AI AA Journal, 1983, 21 (8): 1168-1173.
|
[8] |
BARUCH M, BAR ITZHACK I Y. Opti mal weighted orthogonalization of measured modes[J]. AI AA Journal, 1979, 17 (8): 927-928.
|
[9] |
BARUCH M. Proportional opti mal orthogonalization ofmeasured modes[J]. AI AAJournal, 1980, 18 (7): 859-861.
|