CHEN Guang-xiong, HU Wen-ping, WANG Ping, ZHU Min-hao. Fractal description method of corrugation for friction surface[J]. Journal of Traffic and Transportation Engineering, 2015, 15(1): 25-33. doi: 10.19818/j.cnki.1671-1637.2015.01.004
Citation: CHEN Guang-xiong, HU Wen-ping, WANG Ping, ZHU Min-hao. Fractal description method of corrugation for friction surface[J]. Journal of Traffic and Transportation Engineering, 2015, 15(1): 25-33. doi: 10.19818/j.cnki.1671-1637.2015.01.004

Fractal description method of corrugation for friction surface

doi: 10.19818/j.cnki.1671-1637.2015.01.004
More Information
  • Author Bio:

    CHEN Guang-xiong (1962-), male, professor, PhD, +86-28-87603724, chen_guangx@163.com

  • Received Date: 2014-10-08
  • Publish Date: 2015-02-25
  • On the self-built pin-on-disc test machine, the sliding friction test under self-excited vibration was carried out. The average contact stress between wheel and track was simulated by using the friction movement of pin-on-disc. The corrugation sizes of friction surface for disc specimen were measured with laser displacement sensor, the corrugation curves of friction surface for disc specimen under different test conditions were obtained. The fractal description method of corrugation for friction surface was carried out with power spectrum method, the fractal dimensions of corrugation under different test conditions were calculated based on the relationship between power spectrum index and fractal dimension, and the relationships between fractional dimension and other parameters such as rotating speed, normal load and revolution were analyzed. Test result shows that under the same normal load, the fractal dimension calculated by using power spectrum method increases with the increase of rotating speed. Under the same rotating speed, the fractal dimension increases with the increase of normal load. Under the same rotating speed and normal load, the fractal dimension decreases with the increase of revolution. The fractional dimension of corrugation of friction surface for disc specimen is from 1.79 to 1.92, the corrugation of friction surface for disc specimen have obvious fractal characteristics. The larger the fractal dimension is, the more serious the corrugation of friction surface for disc specimen is, and the longer the wave length of corrugation is.The result calculated by using power spectrum method is consistent with the experimental result, so fractal dimension can be used to quantitatively describe the corrugation of friction surface.

     

  • loading
  • [1]
    闫子权, 谷爱军, 黑勇进, 等. 轮对振动对产生钢轨异常波磨的影响[J]. 都市快轨交通, 2011, 24(3): 22-25, 29. doi: 10.3969/j.issn.1672-6073.2011.03.007

    YAN Zi-quan, GU Ai-jun, HEI Yong-jin, et al. Influences of wheel set vibration on rail abnormal corrugation[J]. Urban Rapid Rail Transit, 2011, 24(3): 22-25, 29. (in Chinese) doi: 10.3969/j.issn.1672-6073.2011.03.007
    [2]
    SATO Y, MATSUMOTO A, KNOTHE K. Review on rail corrugation studies[J]. Wear, 2002, 253(1): 130-139. https://www.sciencedirect.com/science/article/pii/S0043164802000923
    [3]
    CORREA N, OYARZABAL O, VADILLO E G, et al. Rail corrugation development in high speed lines[J]. Wear, 2011, 271(1): 2438-2447. https://www.sciencedirect.com/science/article/pii/S0043164811001414
    [4]
    温泽峰. 钢轨波浪形磨损研究[D]. 成都: 西南交通大学, 2006.

    WEN Ze-feng. Study on rail corrugation[D]. Chengdu: Southwest Jiaotong University, 2006. (in Chinese)
    [5]
    GRASSIE S L. Rail corrugation: advances in measurement, understanding and treatment[J]. Wear, 2005, 258(7): 1224-1234. https://www.sciencedirect.com/science/article/pii/S004316480400290X
    [6]
    KNOTHE K, GROß-THEBING A. Short wavelength rail corrugation and non-steady-state contact mechanics[J]. Vehicle System Dynamics, 2008, 46(1/2): 49-66. https://trid.trb.org/view.aspx?id=850744
    [7]
    SAULOT A, DESCARTES S, BERTHIER Y. Sharp curved track corrugation: from corrugation observed on-site, to corrugation reproduced on simulators[J]. Tribology International, 2009, 42(11): 1691-1705. https://www.sciencedirect.com/science/article/pii/S0301679X0900108X
    [8]
    王国新, 陈光雄, 邬平波. 轨枕支撑刚度和阻尼对小半径曲线钢轨磨耗型波磨影响的有限元研究[J]. 振动与冲击, 2011, 30(2): 99-103. doi: 10.3969/j.issn.1000-3835.2011.02.019

    WANG Guo-xin, CHEN Guang-xiong, WU Ping-bo. Influence of sleeper support stiffness and damping on wear-type rail corrugation on a tight curve[J]. Journal of Vibration and Shock, 2011, 30(2): 99-103. (in Chinese) doi: 10.3969/j.issn.1000-3835.2011.02.019
    [9]
    WANG Kai-yun, HUANG Chao, ZHAI Wan-ming, et al. Progress on wheel-rail dynamic performance of railway curve negotiation[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(3): 209-220. doi: 10.1016/S2095-7564(15)30104-5
    [10]
    张波, 刘启跃. 钢轨波浪形磨损的研究分析[J]. 西南交通大学学报, 2001, 36(5): 500-504. doi: 10.3969/j.issn.0258-2724.2001.05.012

    ZHANG Bo, LIU Qi-yue. Research review on rail corrugation[J]. Journal of Southwest Jiaotong University, 2001, 36(5): 500-504. (in Chinese) doi: 10.3969/j.issn.0258-2724.2001.05.012
    [11]
    ZAREMBSKI A M. Types of rail corrugations[J]. Railway Track and Structures, 1989, 85(8): 13-15. https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=200902029558436719
    [12]
    GRASSIE S L. Rail corrugation: characteristics, causes, and treatments[J]. Journal of Rail and Rapid Transit, 2009, 223(6): 581-596. doi: 10.1243/09544097JRRT264
    [13]
    刘维宁, 任静, 刘卫丰, 等. 北京地铁钢轨波磨测试分析[J]. 都市快轨交通, 2011, 24(3): 6-9. doi: 10.3969/j.issn.1672-6073.2011.03.003

    LIU Wei-ning, REN Jing, LIU Wei-feng, et al. In-situ tests and analysis on rail corrugation of Beijing Metro[J]. Urban Rapid Rail Transit, 2011, 24(3): 6-9. (in Chinese) doi: 10.3969/j.issn.1672-6073.2011.03.003
    [14]
    CHEN Guang-xiong, ZHOU Zhong-rong, OUYANG Hua-jiang, et al. A finite element study on rail corrugation based on saturated creep force-induced self-excited vibration of a wheelset-track system[J]. Journal of Sound and Vibration, 2010, 329(22): 4643-4655. doi: 10.1016/j.jsv.2010.05.011
    [15]
    吴兆宏, 朱华, 李刚. 摩擦信号分形维数与载荷和速度的关系研究[J]. 摩擦学学报, 2007, 27(2): 161-165. doi: 10.3321/j.issn:1004-0595.2007.02.014

    WU Zhao-hong, ZHU Hua, LI Gang. Research on the relation of fractal dimension of friction coefficient to load and velocity[J]. Tribology, 2007, 27(2): 161-165. (in Chinese) doi: 10.3321/j.issn:1004-0595.2007.02.014
    [16]
    葛世荣. 粗糙表面的分形特征与分形表达研究[J]. 摩擦学学报, 1997, 17(1): 73-80. doi: 10.3321/j.issn:1004-0595.1997.01.011

    GE Shi-rong. The fractal behavior and fractal characterization of rough surface[J]. Tribology, 1997, 17(1): 73-80. (in Chinese) doi: 10.3321/j.issn:1004-0595.1997.01.011
    [17]
    朱华, 葛世荣. 结构函数与均方根分形表征效果的比较[J]. 中国矿业大学学报, 2004, 33(4): 396-399. doi: 10.3321/j.issn:1000-1964.2004.04.008

    ZHU Hua, GE Shi-rong. Comparison of fractal characterization effects of structure function and mean square root[J]. Journal of China University of Mining and Technology, 2004, 33(4): 396-399. (in Chinese) doi: 10.3321/j.issn:1000-1964.2004.04.008
    [18]
    朱华, 葛世荣. 摩擦力和摩擦振动的分形行为研究[J]. 摩擦学学报, 2004, 24(5): 433-437. doi: 10.3321/j.issn:1004-0595.2004.05.011

    ZHU Hua, GE Shi-rong. Study on the fractal behaviors of frictional forces and vibrations[J]. Tribology, 2004, 24(5): 433-437. (in Chinese) doi: 10.3321/j.issn:1004-0595.2004.05.011
    [19]
    蒋书文, 姜斌, 李燕, 等. 磨损表面形貌的三维分形维数计算[J]. 摩擦学学报, 2003, 23(6): 533-536. doi: 10.3321/j.issn:1004-0595.2003.06.017

    JIANG Shu-wen, JIANG Bin, LI Yan, et al. Calculation of fractal dimension of worn surface[J]. Tribology, 2003, 23(6): 533-536. (in Chinese) doi: 10.3321/j.issn:1004-0595.2003.06.017
    [20]
    李刚, 朱华, 吕亮. 两种测度方法表征粗糙表面的效果研究[J]. 润滑与密封, 2006(7): 48-50. https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF200607016.htm

    LI Gang, ZHU Hua, LU Liang. Study on the differences of characterizing rough surfaces with two fractal dimension methods[J]. Lubrication Engineering, 2006(7): 48-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF200607016.htm
    [21]
    OTHMANI A, KAMINSKY C. Three dimensional fractal analysis of sheet metal surfaces[J]. Wear, 1998, 214(2): 147-150. doi: 10.1016/S0043-1648(97)00266-4
    [22]
    伍曾, 刘学毅, 姚令侃. 钢轨波磨的分形描述及动力仿真分析[J]. 西南交通大学学报, 2009, 44(5): 721-725. doi: 10.3969/j.issn.0258-2724.2009.05.017

    WU Zeng, LIU Xue-yi, YAO Ling-kan. Fractal description of rail corrugation and its dynamic simulation[J]. Journal of Southwest Jiaotong University, 2009, 44(5): 721-725. (in Chinese) doi: 10.3969/j.issn.0258-2724.2009.05.017
    [23]
    MANDELBROT B B, PASSOJA D E, PAULLAY A J. Fractal character of fracture surfaces of metals[J]. Nature, 1984, 308(5961): 721-722. doi: 10.1038/308721a0
    [24]
    YUAN C Q, LI J, YAN X P, et al. The use of the fractal description to characterize engineering surfaces and wear particles[J]. Wear, 2003, 255(1): 315-326. https://www.sciencedirect.com/science/article/pii/S0043164803002060
    [25]
    MAJUMDAR A, TIEN C L. Fractal characterization and simulation of rough surfaces[J]. Wear, 1990, 136(2): 313-327. doi: 10.1016/0043-1648(90)90154-3
    [26]
    GAGNEPAIN J J, RQUES-CARMES C. Fractal approach to two-dimensional and three-dimensional surface roughness[J]. Wear, 1986, 109(1): 119-126. https://www.sciencedirect.com/science/article/pii/0043164886902577
    [27]
    陈辉, 胡元中, 王慧, 等. 粗糙表面分形特征的模拟及其表征[J]. 机械工程学报, 2006, 42(9): 219-223. doi: 10.3321/j.issn:0577-6686.2006.09.039

    CHEN Hui, HU Yuan-zhong, WANG Hui, et al. Simulation and characterization of fractal rough surfaces[J]. Chinese Journal of Mechanical Engineering, 2006, 42(9): 219-223. (in Chinese) doi: 10.3321/j.issn:0577-6686.2006.09.039
    [28]
    袁群, 韩菊红, 于跃海. 混凝土粘结面粗糙度评价的功率谱法分维[J]. 工业建筑, 2001, 31(2): 4-5, 23. doi: 10.3321/j.issn:1000-8993.2001.02.002

    YUAN Qun, HAN Ju-hong, YU Yue-hai. Fractional dimension of power spectrum method for evaluating surface roughness of bonding concrete[J]. Industrial Construction, 2001, 31(2): 4-5, 23. (in Chinese) doi: 10.3321/j.issn:1000-8993.2001.02.002
    [29]
    杜文杰. 波磨的分形性分析及其应用[D]. 北京: 北京交通大学, 2012.

    DU Wen-jie. Fractal analysis and application of rail corrugations[D]. Beijing: Beijing Jiaotong University, 2012. (in Chinese)
    [30]
    SHEN Gang, ZHONG Xiao-bo. Implementations of newly developed wheel and rail profile design methods[J]. Journal of Traffic and Transportation Engineering: English Edition, 2014, 1(3): 221-227. doi: 10.1016/S2095-7564(15)30105-7
    [31]
    余萍, 胡孝平. MATLAB在振动台试验数据处理中的应用[J]. 水利与建筑工程学报, 2008, 6(1): 121-122. doi: 10.3969/j.issn.1672-1144.2008.01.039

    YU Ping, HU Xiao-ping. Application of MATLAB software in data processing for vibrating table test[J]. Journal of Water Resources and Architectural Engineering, 2008, 6(1): 121-122. (in Chinese) doi: 10.3969/j.issn.1672-1144.2008.01.039
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (932) PDF downloads(727) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return