ZHENG Shu-yang, JIN Chun, LUO Wei-dong. Power matching control strategy of power source for mine truck[J]. Journal of Traffic and Transportation Engineering, 2015, 15(1): 82-91. doi: 10.19818/j.cnki.1671-1637.2015.01.011
Citation: ZHENG Shu-yang, JIN Chun, LUO Wei-dong. Power matching control strategy of power source for mine truck[J]. Journal of Traffic and Transportation Engineering, 2015, 15(1): 82-91. doi: 10.19818/j.cnki.1671-1637.2015.01.011

Power matching control strategy of power source for mine truck

doi: 10.19818/j.cnki.1671-1637.2015.01.011
More Information
  • Author Bio:

    ZHENG Shuryang(1986-), male, doctoral student, + 86-10-62332467, 59708858 qq.com

    JIN Chun(1975-), male, associate professor, PhD, + 86-10-82375949, jinjinbit@163.com

  • Received Date: 2014-08-23
  • Publish Date: 2015-02-25
  • Considering that the working points of mine truck engine were distributed in low efficiency area, the AC(alternating current)drive control strategy based on power matching was designed, and the output power was adjusted by transmission system according to different driving cycles.The power region of electric drive system was determined.Vehicle load degree was introduced to evaluate load degrees of different driving cycles.A three-layer hierarchical control strategy was proposed.The rotational speeds of in-wheel motor were pretreated by using moving average filter algorithm, and vehicle load degrees were calculated in the upper algorithm.In the middle algorithm, the reference power was calculated with vehicle load degree and engine speed, and a three-dimensional fuzzy controller was used in the middle algorithm.In the lower algorithm, the reference power was tracked by driving system to realize power matching of mine truck.The electric drive test bench was built, and the effect of power matching control strategy was verified.Verification result indicates that by using power matching control strategy, the change of load degrees can be quickly identified for common driving cycles of starting, climbing, sudden loading and downhill.The driving power of current load is calculated, which can guarantee the dynamic performance of mine truck in complicated working conditions.The oil saving effect of control strategy for mine truck is examined by steady test, and the working points of engine locate nearby the optimum fuel economy curve.Compared with the maximum power satisfied strategy, the fuel consumption of power matching control strategy reduces by 10.8%for load of 40 kW, and 4.8% for load of 80 kW, so the effectiveness and feasibility of control strategy are validated.

     

  • loading
  • [1]
    LI Xiao-ying, YU Xiu-min, LI Jun, et al. Control strategy for series hybrid-power vehicle[J]. Journal of Jilin University: Engineering and Technology Edition, 2005, 35(2): 122-126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY200502002.htm
    [2]
    PENG Wu, ZHANG Jun-zhi, LU Qing-chun. Simulation on the control strategy of hybrid electric bus[J]. Journal of Highway and Transportation Research and Development, 2003, 20(1): 148-150, 154. (in Chinese) doi: 10.3969/j.issn.1002-0268.2003.01.038
    [3]
    CHAN C C. An overview of electric vehicle technology[J]. Proceedings of the IEEE, 1993, 81(9): 1202-1213. doi: 10.1109/5.237530
    [4]
    CHAN C C. The state of the art of electric and hybrid vehicles[J]. Proceedings of the IEEE, 2002, 90(2): 247-275. doi: 10.1109/5.989873
    [5]
    WANG Lei, ZHANG Yong, SHU Jie, et al. Mode transition control for series-parallel hybrid electric bus using fuzzy adaptive sliding mode approach[J]. Journal of Mechanical Engineering, 2012, 48(14): 119-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201214019.htm
    [6]
    MURPHEY Y L, PARK J, CHEN Z, et al. Intelligent hybrid vehicle power control―Part Ⅰ: machine learning of optimal vehicle power[J]. IEEE Transactions on Vehicular Technology, 2012, 61(8): 3519-3530. doi: 10.1109/TVT.2012.2206064
    [7]
    MURPHEY Y L, PARK J, KILIARIS L, et al. Intelligent hybrid vehicle power control―Part Ⅱ: online intelligent energy management[J]. IEEE Transactions on Vehicular Technology, 2013, 62(1): 69-79. doi: 10.1109/TVT.2012.2217362
    [8]
    JOHANNESSON L, PETTERSSON S, EGARDT B, et al. Predictive energy management of a 4QT series-parallel hybrid electric bus[J]. Control Engineering Practice, 2009, 17(7): 1440-1453.
    [9]
    LIN Ju-guang, GU Jie, ZHU Mao-fei. A study on PHEV output torque control based on fuzzy recognition of driver's intention[J]. Automotive Engineering, 2012, 34(11): 984-989. (in Chinese) doi: 10.3969/j.issn.1000-680X.2012.11.005
    [10]
    SUN Yi-ze, WANG Qi-ming. Fuzzy discernment of the driving environment and the driving intention in AMT[J]. Automotive Engineering, 2001, 23(6): 419-422. (in Chinese) doi: 10.3321/j.issn:1000-680X.2001.06.015
    [11]
    QIU Tie, XU Zi-chuan, JIANG He. Smartcar road status recognition based on fuzzy control[J]. Computer Engineering and Applications, 2009, 45(14): 213-216. (in Chinese) doi: 10.3778/j.issn.1002-8331.2009.14.066
    [12]
    ZOU Yuan, CHEN Rui, HOU Shi-jie, et al. Energy management strategy for hybrid electric tracked vehicle based on stochastic dynamic programming[J]. Journal of Mechanical Engineering, 2012, 48(14): 91-96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201214015.htm
    [13]
    LIN Xin-you, SUN Dong-ye, YIN Yan-li, et al. The energy management strategy for a series-parallel hybrid electric bus based on stochastic dynamic programming[J]. Automotive Engineering, 2012, 34(9): 830-836, 858. (in Chinese) doi: 10.3969/j.issn.1000-680X.2012.09.013
    [14]
    TATE E D, GRIZZLE J W, PENG H. Shortest path sto-chastic control for hybrid electric vehicles[J]. International Journal of Robust and Nonlinear Control, 2008, 14(18): 1409-1429.
    [15]
    LIU Hong-bo, LEI Yu-long, FU Yao, et al. Torque-based vehicle load recognition method[J]. Journal of Jilin University: Engineering and Technology Edition, 2012, 42(5): 1107-1112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201205007.htm
    [16]
    ZHANG Tai, GE An-lin, TANG Chun-xue, et al. Shift schedule self-adaptive control of off-road vehicle automated mechanical transmission[J]. Transactions of the Chinese Society for Agricultural Machinery, 2006, 37(4): 5-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX200604002.htm
    [17]
    ZHANG Tai, GE An-lin, GUO Li-shu, et al. Shift schedule based on vehicle loading[J]. Transactions of the Chinese Society for Agricultural Machinery, 2004, 35(3): 9-12. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX200403002.htm
    [18]
    JIN Hui, LI Lei, LI Bin-hu, et al. Slope recognition method based on acceleration interval judgment[J]. China Journal of Highway and Transport, 2010, 23(1): 122-126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201001023.htm
    [19]
    LEI Yu-long, FU Yao, LIU Ke, et al. Vehicle mass and road grade estimation based on extended Kalman filter[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(11): 9-13, 8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201411002.htm
    [20]
    WANG Yu-hai, DONG Rui-xian, WANG Song, et al. Real-time road slope recognition algorithm for heavy truck based SAE J1939 protocol[J]. Automotive Engineering, 2010, 32(7): 640-642, 647. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201007021.htm
    [21]
    JIN Hui, GE An-lin, QIN Gui-he, et al. Study on slope recognition method based on vehicle's longitudinal dynamics[J]. Journal of Mechanical Engineering, 2002, 38(1): 79-86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB200201018.htm
    [22]
    SHANG Tao, ZHAO Ding-xuan, XIAO Ying-kui, et al. Power matching for energy-saving control system of hydraulic excavators[J]. Journal of Jilin University: Engineering and Technology Edition, 2004, 34(4): 592-596. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY200404015.htm
    [23]
    WANG Dong-yun, GUAN Cheng, PAN Shuang-xia, et al. Control strategy of power matching and power sources optimization for hydraulic excavators[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(4): 91-95. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX200904020.htm
    [24]
    PARK J, CHEN Zhi-hang, KILIARIS L, et al. Intelligent vehicle power control based on machine learning of optimal control parameters and prediction of road type and traffic congestion[J]. IEEE Transactions on Vehicular Technology, 2009, 58(9): 4741-4756.
    [25]
    YUAN Xi-bo, WANG Jia-bin. Torque distribution strategy for a front-and rear-wheel-driven electric vehicle[J]. IEEE Transactions on Vehicular Technology, 2012, 61(8): 3365-3374.

Catalog

    Article Metrics

    Article views (744) PDF downloads(13012) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return