JIN Long, WANG Shuang-jie, MU Ke, PENG Hui. Cooling effect of thermosyhpon subgrade for Qinghai-Tibet Highway[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4): 45-58. doi: 10.19818/j.cnki.1671-1637.2016.04.005
Citation: JIN Long, WANG Shuang-jie, MU Ke, PENG Hui. Cooling effect of thermosyhpon subgrade for Qinghai-Tibet Highway[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4): 45-58. doi: 10.19818/j.cnki.1671-1637.2016.04.005

Cooling effect of thermosyhpon subgrade for Qinghai-Tibet Highway

doi: 10.19818/j.cnki.1671-1637.2016.04.005
More Information
  • Author Bio:

    JIN Long(1982-), male, senior engineer, PhD, +86-29-88853000, jlcoolmail@163.com

  • Received Date: 2016-06-10
  • Publish Date: 2016-08-25
  • In order to analyze the engineering effect of thermosyphon subgrade in permafrost regions and quantitatively evaluate its cooling effect, the 11 years'observational data were collected from the thermosyphon subgrade test project of Qinghai-Tibet Highway, the ground temperature characteristics, temperature field profiles and freezing-thawing process of thermosyphon subgrade were analyzed, and the horizontal thermal budget near the thermosyphons under the influence of shady-sunny slope effect was evaluated. A threedimensional unsteady coupled air-thermosyphon-foundation computation model was proposed, and the cooling effects of thermosyphon subgrades with different structures, such as one-side vertical type, one-side inclined type, two-side vertical type and two-side inclined type, were investigated. Measured result shows that the monitoring data indicates that the ground temperature of thermosyphon subgrade at sunny side is about-1.5 ℃, 3.0 ℃ lower than thevalue of traditional subgrade, and the lowest ground temperature at shady side can reach to-2. 1 ℃. During 11years'operation of thermosyphon subgrade, the permafrost table at sunny side elevates about 0.95 m, and basically reaches to the level of natural foundation. The mean annual actual powers of thermosyphon subgrades at shady side and sunny side are about 69. 80 and 54.07 W, respectively. During the previous 5years, the thermosyphon presents a larger power. After 6th year, the power gradually decreases, and the thermal state of subgrade tends towards stability. Calculated result shows that after 20 years, the permafrost tables under the two-side vertical and inclined type thermosyphon subgrades are 2.88 and 1.88 mrespectively, the permafrost tables under one-side vertical and inclined type thermosyphon subgrades are 3. 84and3. 46 m, respectively, so, the two-side type thermosyphon subgrade expresses a stronger longterm cooling effect than the one-side type thermosyphon subgrade, similarly, the inclined type thermosyphon subgrade has a stronger cooling effect than the vertical type thermosyphon subgrade. The annual average power of one thermosyphon varies from 47 Wto 56 W, agreeing well with the monitoring data.

     

  • loading
  • [1]
    CHENG Guo-dong. A roadbed cooling approach for the construction of Qinghai-Tibet Railway[J]. Cold Regions Science and Technology, 2005, 42(2): 169-176. doi: 10.1016/j.coldregions.2005.01.002
    [2]
    CHENG Guo-dong, HE Ping. Linearity engineering in permafrost areas[J]. Journal of Glaciology and Geocryology, 2001, 23(3): 213-217. (in Chinese). doi: 10.3969/j.issn.1000-0240.2001.03.001
    [3]
    XU Jian-feng, GOERING D J. Experimental validation of passive permafrost cooling systems[J]. Cold Regions Science and Technology, 2008, 53(3): 283-297. doi: 10.1016/j.coldregions.2007.09.002
    [4]
    CHENG Guo-dong, SUN Zhi-zhong, NIU Fu-jun. Application of the roadbed cooling approach in Qinghai-Tibet Railway engineering[J]. Cold Regions Science and Technology, 2008, 53(3): 241-258. doi: 10.1016/j.coldregions.2007.02.006
    [5]
    WU Qing-bai, LI Shu-xun, LIU Yong-zhi. The impact of climate warming on permafrost and Qinghai-Tibet Railway[J]. Engineering Sciences, 2006, 4(2): 92-97.
    [6]
    SUN Zhi-zhong, MA Wei, LI Dong-qing. In situ test on cooling effectiveness of air convection embankment with crushed rock slope protection in permafrost regions[J]. Journal of Cold Regions Engineering, 2005, 19(2): 38-51. doi: 10.1061/(ASCE)0887-381X(2005)19:2(38)
    [7]
    GOERING D J. Passively cooled railway embankments for use in permafrost areas[J]. Journal of Cold Regions Engineering, 2003, 17(3): 119-133. doi: 10.1061/(ASCE)0887-381X(2003)17:3(119)
    [8]
    LAI Yuan-ming, ZHANG Lu-xin, ZHANG Shu-juan, et al. Cooling effect of ripped-stone embankments on Qing-Tibet Railway under climatic warming[J]. Chinese Science Bulletin, 2003, 48(6): 598-604. doi: 10.1360/03tb9127
    [9]
    WANG Shuang-jie, HUANG Xiao-ming, CHEN Jian-bing, et al. Research on frozen soil subgrade cooling by non-power heat pipe[J]. Journal of Highway and Transportation Research and Development, 2005, 22(3): 1-4. (in Chinese). doi: 10.3969/j.issn.1002-0268.2005.03.001
    [10]
    YANG Yong-ping, WEI Qing-chao, ZHOU Shun-hua, et al. Thermosyphon technology and its application in permafrost[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(6): 698-706. (in Chinese). doi: 10.3321/j.issn:1000-4548.2005.06.019
    [11]
    SHENG Yu, ZHANG Lu-xin, YANG Cheng-song, et al. Application of thermal-insulation treatment to roadway engineering in permafrost regions[J]. Journal of Glaciology and Geocryology, 2002, 24(5): 618-622. (in Chinese). doi: 10.3969/j.issn.1000-0240.2002.05.025
    [12]
    FARSI H, JOLY J L, MISCEVIC M, et al. An experimental and theoretical investigation of the transient behavior of a two-phase closed thermosyphon[J]. Applied Thermal Engineering, 2003, 23(15): 1895-1912. doi: 10.1016/S1359-4311(03)00147-9
    [13]
    NOIE S H. Heat transfer characteristics of a two-phase closed thermosyphon[J]. Applied Thermal Engineering, 2005, 25(4): 495-506. doi: 10.1016/j.applthermaleng.2004.06.019
    [14]
    PAN Wei-dong, LIAN Feng-yu, DENG Hong-yan, et al. Application principle and prospect of thermal-probe technique in cold regions engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(S2): 2673-2676. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2003S2027.htm
    [15]
    SONG Yi, JIN Long, ZHANG Jin-zhao. In-situ study on cooling characteristics of two-phase closed thermosyphon embankment of Qinghai-Tibet Highway in permafrost regions[J]. Cold Regions Science and Technology, 2013, 93: 12-19. doi: 10.1016/j.coldregions.2013.05.002
    [16]
    WU Di, JIN Long, PENG Jian-bing, et al. The thermal budget evaluation of the two-phase closed thermosyphon embankment of the Qinghai-Tibet Highway in permafrost regions[J]. Cold Regions Science and Technology, 2014, 103: 115-122. doi: 10.1016/j.coldregions.2014.03.013
    [17]
    CHENG Hong-bin. The key technology study of low temperature heat pipe of Qinghai-Tibet Railway in permafrost regions[D]. Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2007. (in Chinese).
    [18]
    MU Yan-hu, WANG Guo-shuang, YU Qi-hao, et al. Thermal performance of a combined cooling method of thermosyphons and insulation boards for tower foundation soils along the Qinghai-Tibet Power Transmission Line[J]. Cold Regions Science and Technology, 2016, 121: 226-236. doi: 10.1016/j.coldregions.2015.06.006
    [19]
    LAI Yuan-ming, GUO Hong-xin, DONG Yuan-hong. Laboratory investigation on the cooling effect of the embankment with L-shaped thermosyphon and crushed-rock revetment in permafrost regions[J]. Cold Regions Science and Technology, 2009, 58(3): 143-150. doi: 10.1016/j.coldregions.2009.05.002
    [20]
    ZHANG Ming-yi, LAI Yuan-ming, WU Qing-bai, et al. A fullscale field experiment to evaluate the cooling performance of a novel composite embankment in permafrost regions[J]. International Journal of Heat and Mass Transfer, 2016, 95: 1047-1056. doi: 10.1016/j.ijheatmasstransfer.2015.12.067
    [21]
    DONG Yuan-hong, LAI Yuan-ming, CHEN Wu. Cooling effect of combined L-shaped thermosyphon, crushed-rock revetment and insulation for high-grade highways in permafrost regions[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6): 1043-1049. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201206014.htm
    [22]
    YANG Yong-ping, ZHOU Shun-hua, WEI Qing-chao. Effect simulation of different declining angles of thermosyphons used in Qinghai-Tibet Railway permafrost embankment[J]. China Civil Engineering Journal, 2006, 39(3): 108-113. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC200603016.htm
    [23]
    TIAN Ya-hu, LIU Jian-kun, SHEN Yu-peng. 3-D finite element analysis of cooling effect of Qinghai-Tibet Railway embankment with thermosyphons in permafrost regions[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 113-119. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2020.htm
    [24]
    ZHANG Ming-yi, LAI Yuan-ming, ZHANG Jian-ming, et al. Numerical study on cooling characteristics of two-phase closed thermosyphon embankment in permafrost regions[J]. Cold Regions Science and Technology, 2011, 65(2): 203-210. doi: 10.1016/j.coldregions.2010.08.001
    [25]
    ZHANG Ming-yi, LAI Yuan-ming, PEI Wan-sheng, et al. Effect of inclination angle on the heat transfer performance of a two-phase closed thermosyphon under low-temperature conditions[J]. Journal of Cold Regions Engineering, 2014, 28(4): 1-11.
    [26]
    WU Jun-jie, MA Wei, SUN Zhi-zhong, et al. In-situ study on cooling effect of the two-phase closed thermosyphon and insulation combinational embankment of the Qinghai-Tibet Railway[J]. Cold Regions Science and Technology, 2010, 60(3): 234-244. doi: 10.1016/j.coldregions.2009.11.002
    [27]
    JIN Long. Study on cooling effect and design method of thermosyphon embankment in permafrost regions[D]. Lanzhou: Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, 2013. (in Chinese).
    [28]
    ZHU Lin-nan. Study of the adherent layer on different types of ground in permafrost regions on the Qinghai-Xizang Plateau[J]. Journal of Glaciology and Geocryology, 1988, 10(1): 8-14. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT198801001.htm
    [29]
    JIN Long, WANG Shuang-jie, CHEN Jian-bing, et al. Study on the height effect of highway embankments in permafrost regions[J]. Cold Regions Science and Technology, 2012, 83-84: 122-130. doi: 10.1016/j.coldregions.2012.07.006
    [30]
    WANG Shuang-jie, CHEN Jian-bing, JIN Long, et al. Scale effect of thermal budget of permafrost embankment[J]. China Journal of Highway and Transport, 2015, 28(12): 9-16. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201512003.htm

Catalog

    Article Metrics

    Article views (1033) PDF downloads(981) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return