Citation: | WANG Er-gen, SUN Jian. Merging influence factors recognition and behaviors prediction of on-ramp vehicles of urban expressway[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 180-188. doi: 10.19818/j.cnki.1671-1637.2018.03.018 |
[1] |
CHEVALLIER E, LECLERCQ L. Do microscopic merging models reproduce the observed priority sharing ratio in congestion?[J]. Transportation Research Part C: Emerging Technologies, 2009, 17 (3): 328-336. doi: 10.1016/j.trc.2009.01.002
|
[2] |
BONNIN S, WEISSWANGE T H, KUMMERT F, et al. Accurate behavior prediction on highways based on a systematic combination of classifiers[C]∥IEEE. 2013IEEE Intelligent Vehicles Symposium. New York: IEEE, 2013: 242-249.
|
[3] |
ZUO Kang, LIU Qi-yuan, SUN jian. Modeling and simulation of merging behavior at urban expressway on-ramp[J]. Journal of System Simulation, 2017, 29 (9): 1895-1906. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201709004.htm
|
[4] |
ZANG Zhi-gang, LU Feng, LI Hai-feng, et al. Performance evaluation and comparison of seven microscopic transportation simulation systems[J]. Computer and Communications, 2007, 25 (1): 66-70. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS200701017.htm
|
[5] |
SONG Rui, SUN Jian. Calibration of a micro-traffic simulation model with respect to the spatial-temporal evolution of expressway on-ramp bottlenecks[J]. Simulation: Transactions of the Society for Modeling and Simulation International, 2016, 92 (6): 535-546. doi: 10.1177/0037549716645197
|
[6] |
SUN Jie, LI Zhi-peng, SUN Jian. Study on traffic characteristics for a typical expressway on-ramp bottleneck considering various merging behaviors[J]. Physica A: Statistical Mechanics and its Applications, 2015, 440: 57-67. doi: 10.1016/j.physa.2015.08.007
|
[7] |
SUN Jian, HU Jia-qi, SUN Jie. Capacity estimation model on weaving segments of urban expressway[J]. China Journal of Highway and Transport, 2016, 29 (4): 114-122. (in Chinese). doi: 10.3969/j.issn.1001-7372.2016.04.014
|
[8] |
LIU Hao-de, ZHENG Jin-xuan, SUN Jian, et al. Capacity influence factors analysis on merging segments of urban expressway based on multilayer statistical models[J]. Highways and Automotive Applications, 2016 (5): 16-21, 24. (in Chinese). doi: 10.3969/j.issn.1671-2668.2016.05.006
|
[9] |
YANG Qi, KOUTSOPOULOS H N. A microscopic traffic simulator for evaluation of dynamic traffic management systems[J]. Transportation Research Part C: Emerging Technologies, 1996, 4 (3): 113-129. doi: 10.1016/S0968-090X(96)00006-X
|
[10] |
HOU Yi, EDARA P, SUN C. Modeling mandatory lane changing using bayes classifier and decision trees[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15 (2): 647-655. doi: 10.1109/TITS.2013.2285337
|
[11] |
SUN Jian, OUYANG Ji-xiang, YANG Jian-hao. Modeling and analysis of merging behavior at expressway on-ramp bottlenecks[J]. Transportation Research Record, 2014 (2421): 74-81.
|
[12] |
MENG Qiang, WENG Jin-Xian. Cellular automata model for work zone traffic[J]. Transportation Research Record, 2010 (2188): 131-139.
|
[13] |
SUN Jian, SUN Jie, CHEN Peng. Use of support vector machine models for real-time prediction of crash risk on urban expressways[J]. Transportation Research Record, 2014 (2432): 91-98.
|
[14] |
SUN Jian, JIANG Shun, OUYANG Ji-xiang. Modeling the vehicle merging behaviors at urban expressway on-ramp bottlenecks[J]. Journal of Tongji University: Natural Sicence, 2015, 43 (4): 549-554. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201504010.htm
|
[15] |
KUMAR P, PERROLLAZ M, LEF S, et al. Learning-based approach for online lane change intention prediction[C]∥IEEE. 2013IEEE Intelligent Vehicles Symposium. New York: IEEE, 2013: 797-802.
|
[16] |
WANG Er-gen, SUN Jian, JIANG Shun, et al. Modeling the various merging bahaviors at expressway on-ramp bottlenecks using support vector machine models[J]. Transportation Research Procedia, 2017, 25: 1327-1341. doi: 10.1016/j.trpro.2017.05.157
|
[17] |
HOU Yi, EDARA P, SUN C. A genetic fuzzy system for modeling mandatory lane changing[C]∥IEEE. 2012 15th International IEEE Conference on Intelligent Transportation Systems. New York: IEEE, 2012: 1044-1048.
|
[18] |
HOU Yi, EDARA P, SUN C. Situation assessment and decision making for lane change assistance using ensemble learning methods[J]. Expert Systems with Applications, 2015, 42 (8): 3875-3882. doi: 10.1016/j.eswa.2015.01.029
|
[19] |
MARCZAK F, DAAMEN W, BUISSON C. Key variables of merging behaviour: empirical comparison between two sites and assessment of gap acceptance theory[J]. Procedia-Social and Behavioral Sciences, 2013, 80: 678-697. doi: 10.1016/j.sbspro.2013.05.036
|
[20] |
MIGLETZ J, GRAHAM J L, ANDERSON I B, et al. Work zone speed limit procedure[J]. Transportation Research Record, 1999 (1657): 24-30.
|
[21] |
BREIMAN L. Random forests[J]. Machine Learning, 2001, 45 (1): 5-32. doi: 10.1023/A:1010933404324
|
[22] |
REIF D M, MOTSINGER A A, MCKINNEY B A, et al. Feature selection using a random forests classifier for the integrated analysis of multiple data types[C]∥IEEE. 3rd Computational Intelligence in Bioinformatics and Computational Biology Symposium. New York: IEEE, 2006: 171-178.
|
[23] |
SUN Jie, SUN Jian. A dynamic Bayesian network model for real-time crash prediction using traffic speed conditions data[J]. Transportation Research Part C: Emerging Technologies, 2015, 54: 176-186. doi: 10.1016/j.trc.2015.03.006
|
[24] |
ZHOU Tao, ZHAI Chang-xu, GAO Zhi-gang. Study on the forewarning system of freeway based on Bayesian networks[J]. Highway Engineering, 2007, 32 (4): 163-166. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL200704040.htm
|
[25] |
DING Wei, SONG P X K. EM algorithm in Gaussian copula with missing data[J]. Computational Statistics and Data Analysis, 2016, 101: .
|