Citation: | GAO Miao, SHI Guo-you, LI Wei-feng. Online compression algorithm of AIS trajectory data based on improved sliding window[J]. Journal of Traffic and Transportation Engineering, 2018, 18(3): 218-227. doi: 10.19818/j.cnki.1671-1637.2018.03.022 |
[1] |
WEI Zhao-kun, ZHOU Kang, WEI Ming, et al. Ship motion pattern recognition and application based on AIS data[J]. Journal of Shanghai Maritime University, 2016, 37 (2): 17-22, 71. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHHY201602005.htm
|
[2] |
REN Ya-lei. Study on ship encounters using AIS data[D]. Wuhan: Wuhan University of Technology, 2013. (in Chinese).
|
[3] |
JIANG Jun-wen, WANG Xiao-ling. Review on trajectory data compression[J]. Journal of East China Normal University: Natural Science, 2015 (5): 61-76. (in Chinese). doi: 10.3969/j.issn.1000-5641.2015.05.005
|
[4] |
ZHANG Shu-kai, LIU Zheng-jiang, ZHANG Xian-ku, et al. A method for AIS track data compression based on DouglasPeucker algorithm[J]. Journal of Harbin Engineering University, 2015, 36 (5): 595-599. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201505002.htm
|
[5] |
XU Kai, QIU Jia-yu, LI Yan. Offline efficient compression algorithm for AIS data retains time elapsing dimension[J]. Computer Science, 2017, 44 (11A): 498-502. (in Chinese). doi: 10.11896/j.issn.1002-137X.2017.11A.106
|
[6] |
MERATNIA N, DE BY R A. Spatiotemporal compression techniques for moving point objects[J]. 2004, 2992: 765-782.
|
[7] |
KELLARIS G, PELEKIS N, THEODORIDIS Y. Trajectory Compression under Network Constraints[J]. Lecture Notes in Computer Science, 2009, 5644: 392-398.
|
[8] |
LU Cheng-jiao, CHEN Feng, XU Yong-zhi, et al. A trajectory compression algorithm based on non-uniform quantization[C]∥IEEE. 12th International Conference on Fuzzy Systems and Knowledge Discovery. New York: IEEE, 2015: 2469-2474.
|
[9] |
DUTTA S, BHATTACHERJEE S, NARANG A. Towards"intelligent compression"in streams: a biased reservoir sampling based Bloom filter approach[C]∥ACM. 15th International Conference on Extending Database Technology, New York: ACM, 2012: 425-426.
|
[10] |
ZHANG Da-fu, ZHANG Xin-ming. A spatiotemporal compression algorithm for GPS trajectory data[J]. Journal of Transport Information and Safety, 2013, 31 (3): 6-9. (in Chinese). doi: 10.3963/j.issn.1674-4861.2013.03.002
|
[11] |
JI Y, LIU H, LIU X, et al. A comparison of road-networkconstrained trajectory compression methods[C]∥IEEE. 22nd IEEE International Conference on Parallel and Distributed Systems. New York: IEEE, 2016: 256-263.
|
[12] |
HAN Yun-heng, SUN Wei-wei, ZHENG Bai-hua. Compress: a comprehensive framework of trajectory compression in road networks[J]. ACM Transactions on Database Systems, 2017, 42 (2): 1-49.
|
[13] |
ZHU Meng, SUN Jian. GPS trajectory data compression algorithm based on MBR[J]. Journal of Xinyang College of Agriculture and Forestry, 2016, 26 (1): 117-120, 123. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XYNG201601037.htm
|
[14] |
WU Jia-gao, XIA Xuan, LIU Lin-feng. Parallel trajectory compression method based on MapReduce[J]. Journal of Computer Application, 2017, 37 (5): 1282-1286, 1330. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201705011.htm
|
[15] |
MUCKELL J, PATIL V, PING Fan. SQUISH: an online approach for GPS trajectory compression[C]∥ACM. 2nd International Conference on Computing for Geospatial Research and Applications. New York: ACM, 2011: 13-20.
|
[16] |
LI Hao, HUANG Yan, MA Yan-wei. The smooth compression algorithm based on cubic polynomial curve[J]. Modular Machine Tooland Automatic Manufacturing Technique, 2016 (6): 12-15. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZHJC201606004.htm
|
[17] |
FAN Qing-fu, ZHANG Lei, LIU Lei-jun, et al. Online GPS trajectory data compression based on offset calculation[J]. Computer Engineering and Applications, 2017, 53 (8): 254-259. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201708046.htm
|
[18] |
HERSHKOVITS Y, ZIV J. On sliding window universal data compression with limited memory[J]. IEEE Transactions on Information Theory, 1998, 44 (1): 66-78. doi: 10.1109/18.650988
|
[19] |
CHEN Ye-hong, PARK P S, GAO Qian. An enhanced modelbased tracking algorithm with dynamic adjustment of learning parameters according to online performance evaluation[J]. Indian Journal of Science Technology, 2015, 8 (26): 1-6.
|
[20] |
DING Zhen-guo. A Study on the cloud storage system of ship's AIS data[J]. Journal of Zhejiang Institute of Communications, 2016, 17 (1): 37-42. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZJZJ201601009.htm
|
[21] |
WU Jia-gao, LIU Min, WEI Guang, et al. An improved trajectory data compression algorithm ofsliding window[J]. Computer Technology and Development, 2015, 25 (12): 47-51. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-WJFZ201512011.htm
|
[22] |
ZHAO You-qiao, WANG Jian, LU Song-feng, et al. A sliding window compression algorithm based on suffix array[J]. Computer Engineering and Applications, 2012, 48 (15): 59-62. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201215014.htm
|
[23] |
KEOGH E, CHU S, HART D, et al. An online algorithm for segmenting time series[C]∥IEEE. 2001IEEE International Conference on Data Mining. New York: IEEE, 2001: 289-296.
|
[24] |
INENAGA S, SHINOHARA A, TAKEDA M, et al. Compact directed acyclic word graphs for asliding window[J]. Lecture Notes in Computer Science, 2002, 2476: 310-324.
|
[25] |
WANG Xu, LI Jian-zhong, WANG Wei-ping. Processing compressedsliding window continuous queries over data streams[J]. Journal of computer research and development, 2004, 41 (10): 1639-1644. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JFYZ200410005.htm
|
[26] |
BELYAEV E, FORCHHAMMER S, LIU Kai. An adaptive multialphabet arithmetic coding based on generalized virtual sliding window[J]. IEEE Signal Processing Letters, 2017, 24 (7): 1034-1038.
|
[27] |
SHI Guo-you, ZHU Gong-zhi, WANG Yu-mei, et al. High accurate algorithm for forward and inverse solution of rhumb line's problem[J]. Journal of Dalian Maritime University, 2009, 35 (2): 5-9. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DLHS200902002.htm
|
[28] |
BI Xiao-jun, FAN Song. Edge detection based on catastrophic theory[J]. Applied Science and Technology, 2008, 35 (6): 1-6. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYKJ200806002.htm
|