Citation: | HE Xiao-long, ZHANG Li-min, ZHANG Fu-bing, LUO Tian-hong. Dynamic optimization design of hanging parameters for traction transformer of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 100-110. doi: 10.19818/j.cnki.1671-1637.2018.05.010 |
[1] |
ZHANG Wei-hua, ZENG Jing, LI Yan. A review of vehicle system dynamics in the development of high-speed trains in China[J]. International Journal of Dynamics and Control, 2013, 1 (1): 81-97. doi: 10.1007/s40435-013-0005-1
|
[2] |
MORIMURA T, SEKI M. The course of achieving 270km·h-1operation for Tokaido Shinkansen—Part 1: technology and operations overview[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2005, 219 (1): 21-26. doi: 10.1243/095440905X8781
|
[3] |
SCHANDL G, LUGNER P, BENATZKY C, et al. Comfort enhancement by an active vibration reduction system for a flexible railway car body[J]. User Modeling and UserAdapted Interaction, 2007, 45 (9): 835-847.
|
[4] |
HE Xiao-long, ZHANG Li-min, LU Lian-tao, et al. Study on selection of aluminum alloy car body bearing structural parameters based on lightweight and stiffness[J]. Journal of the China Railway Society, 2016, 38 (11): 26-32. (in Chinese). doi: 10.3969/j.issn.1001-8360.2016.11.004
|
[5] |
TAKIGAMI T, TOMIOKA T, HANSSON J. Vibration suppression of railway vehiclecarbody with piezoelectric elements (a study by using a scale model of Shinkansen)[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2007, 1 (5): 649-660. doi: 10.1299/jamdsm.1.649
|
[6] |
HE Xiao-long, ZHANG Li-min, LU Lian-tao. Impact analysis of multi hanging equipment on high speed train ride comfort[J]. Journal of Mechanical Engineering, 2018, 54 (6): 69-77. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201806010.htm
|
[7] |
HUANG Cai-hong, ZENG Jing. Flexural vibration suppression of car body for high-speed passenger car based on constrained damping layers[J]. Journal of Traffic and Transportation Engineering, 2010, 10 (1): 36-42. (in Chinese). doi: 10.3969/j.issn.1671-1637.2010.01.007
|
[8] |
HUANG Cai-hong, ZENG Jing, WU Ping-bo, et al. Study on car body flexible vibration reduction for railway passenger carriage[J]. Engineering Mechanics, 2010, 27 (12): 250-256. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201012041.htm
|
[9] |
LUO Guang-bing, ZENG Jing, WANG Qun-sheng. Identifying the relationship between suspension parameters of underframe equipment and carbody modal frequency[J]. Journal of Modern Transportation, 2014, 22 (4): 206-213. doi: 10.1007/s40534-014-0060-0
|
[10] |
SUN Wen-jing, GONG Dao, ZHOU Jin-song, et al. Influences of suspended equipment under car body on high-speed train ride quality[J]. Procedia Engineering, 2011, 16: 812-817. doi: 10.1016/j.proeng.2011.08.1159
|
[11] |
DUMITRIU M. Influence of suspended equipment on the carbody vertical vibration behaviour of high-speed railway vehicles[J]. Archive of Mechanical Engineering, 2016, 63 (1): 145-162. doi: 10.1515/meceng-2016-0008
|
[12] |
DUMITRIU M. A new passive approach to reducing the car body vertical bending vibration of railway vehicles[J]. Vehicle System Dynamics, 2017, 55 (11): 1787-1806. doi: 10.1080/00423114.2017.1330962
|
[13] |
DUMITRIU M. On the critical points of vertical vibration in a railway vehicle[J]. Archive of Mechanical Engineering, 2014, 61 (4): 609-625. doi: 10.2478/meceng-2014-0035
|
[14] | DUMITRIU M. Influence of the vertical suspension on the vibration behavior in the railway vehicles[J]. Annals of the University of Petro爧ani, Mechanical Engineering, 2011, 13: 35-50. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202010017.htm |
[15] |
GONG Dao, ZHOU Jin-song, DU Shuai-mei, et al. Study on the effect of the underframe equipment on vibration transmissibility and modal frequency of the car body for highspeed EMU trains[J]. Journal of Mechanical Engineering, 2016, 52 (18): 126-133. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201618018.htm
|
[16] |
GONG Dao, ZHOU Jin-Song, SUN Wen-Jing. On the resonant vibration of a flexible railway car body and its suppression with a dynamic vibration absorber[J]. Journal of Vibration and Control, 2012, 19 (5): 649-657.
|
[17] |
GONG Dao, ZHOU Jin-song, SUN Wen-Jing. Influence of under-chassis-suspended equipment on high-speed EMU trains and the design of suspension parameters[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2016, 230 (8): 1790-1802. doi: 10.1177/0954409715614601
|
[18] |
GONG Dao, ZHOU Jin-song, SUN Wen-jing, et al. Impacts of hanging equipments on vertical riding stability of elastic high-speed train bodies[J]. Chinese Journal of Construction Machinery, 2011, 9 (4): 404-409. (in Chinese). doi: 10.3969/j.issn.1672-5581.2011.04.005
|
[19] |
SHI Huai-long, LUO Ren, WU Ping-bo, et al. Suspension parameters designing of equipment for electric multiple units based on dynamic vibration absorber theory[J]. Journal of Mechanical Engineering, 2014, 50 (14): 155-161. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201414026.htm
|
[20] |
SHI Huai-long, LUO Ren, WU Ping-bo, et al. Influence of equipment excitation on flexible carbody vibration of EMU[J]. Journal of Modern Transportation, 2014, 22 (4): 195-205. doi: 10.1007/s40534-014-0061-z
|
[21] |
SHI Huai-long, WU Ping-bo. Flexible vibration analysis for car body of high-speed EMU[J]. Journal of Mechanical Science and Technology, 2016, 30 (1): 55-66. doi: 10.1007/s12206-015-1207-6
|
[22] |
WU Hui-chao, WU Ping-bo, WU Na, et al. Matching relations between equipment suspension parameters and a carbody structure[J]. Journal of Vibration and Shock, 2013, 32 (3): 124-128. (in Chinese). doi: 10.3969/j.issn.1000-3835.2013.03.025
|
[23] |
ZENG Jing, WU Ping-bo, HAO Jian-hua. Analysis of vertical vibration reduction for railway vehicle systems[J]. China Railway Science, 2006, 27 (3): 62-67. (in Chinese). doi: 10.3321/j.issn:1001-4632.2006.03.011
|
[24] |
ZENG Jing, LUO Ren. Vibration analysis of railway passenger car systems by considering flexible car body effect[J]. Journal of the China Railway Society, 2007, 29 (6): 19-25. (in Chinese). doi: 10.3321/j.issn:1001-8360.2007.06.004
|
[25] |
ZHAI Wan-ming. Vehicle-Track Coupling Dynamics[M]. Beijing: Science Press, 2007.
|
[26] |
ZHU Jian-yue, ZHU Liang-guang, ZHOU Jin-song. Evaluation of riding comfort and stability index of metro vehicles[J]. Urban Mass Transit, 2007, 10 (6): 28-31. (in Chinese). doi: 10.3969/j.issn.1007-869X.2007.06.010
|
[27] |
FAN Xin-hai, ZHAO Zhi-yong, AN Gang, et al. Research on the arithmetic of mechanical vibration severity in frequency domain[J]. Journal of Academy of Armored Force Engineering, 2008, 22 (1): 42-45. (in Chinese). doi: 10.3969/j.issn.1672-1497.2008.01.010
|
[28] |
CHEN Chu-cai, YAN Bing, FAN Kang, et al. Overview of relevant standards for performance evaluation indexes of diesel generator set's vibration isolation system[J]. Mechanical Engineering and Automation, 2017 (4): 219-221, 226. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SXJX201704095.htm
|
[29] |
SUN Yu-hua, DONG Da-wei, YAN Bing, et al. Modal matching analysis and vibration characteristics of two-stage vibration isolationsystem[J]. JournalofVibration, Measurement and Diagnosis, 2014, 34 (4): 727-731, 781. (in Chinese). doi: 10.3969/j.issn.1004-6801.2014.04.022
|
[30] |
CHEN Jun, DING Jie, YAN Bing, et al. Effect of subsystem parameters on vibration isolation characteristics of two-stage vibration isolation system[J]. Journal of Traffic and Transportation Engineering, 2018, 18 (3): 114-128. (in Chinese). http://transport.chd.edu.cn/article/id/201803012
|