Citation: | ZHOU Zheng-feng, PU Zhuo-heng, TANG Ji-hua. Application of bilinear cohesive zone model in damage and cracking analysis of concrete pavement[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 17-23. doi: 10.19818/j.cnki.1671-1637.2019.01.003 |
[1] |
XIAO Yang-jian, CHEN Zeng-shun, ZHOU Jian-ting, et al. Concrete plastic-damage factor for finite element analysis: concept, simulation, and experiment[J]. Advances in Mechanical Engineering, 2017, 9 (9): 1-10.
|
[2] |
IOANNIDES A M. Fracture mechanics in pavement engineering: the specimen-size effect[J]. Transportation Research Record, 1997 (1568): 10-16.
|
[3] |
RAMSAMOOJ D V, LIN G S, RAMADAN J. Stresses at joints and cracks in highway and airport pavements[J]. Engineering Fracture Mechanics, 1998, 60: 507-518. doi: 10.1016/S0013-7944(98)00059-9
|
[4] |
CASTELL M A, INGRAFFEA A R, IRWIN L H. Fatigue crack growth in pavements[J]. Journal of Transportation Engineering, 2000, 126 (4): 283-290. doi: 10.1061/(ASCE)0733-947X(2000)126:4(283)
|
[5] |
JENSEN E A, HANSEN W. Crack resistance of jointed plain concrete pavements[J]. Transportation Research Record, 2002 (1809): 60-65.
|
[6] |
IOANNIDES A M, PENG Jun, SWINDLER JR J R. ABAQUS model for PCC slab cracking[J]. International Journal of Pavement Engineering, 2006, 7 (4): 311-321. doi: 10.1080/10298430600798994
|
[7] |
GAEDICKE C, ROESLER J, SHAH S. Fatigue crack growth prediction in concrete slabs[J]. International Journal of Fatigue, 2009, 31: 1309-1317. doi: 10.1016/j.ijfatigue.2009.02.040
|
[8] |
AMERI M, MANSOURIAN A, KHAVAS M H, et al. Cracked asphalt pavement under traffic loading—a 3D finite element analysis[J]. Engineering Fracture Mechanics, 2011, 78 (8): 1817-1826. doi: 10.1016/j.engfracmech.2010.12.013
|
[9] |
LING Jian-ming, TAO Ze-feng, QIAN Jin-song, et al. Investigation the influences of geotextile on reducing the thermal reflective cracking using XFEM[J]. International Journal of Pavement Engineering, 2018, 19 (5): 391-398. doi: 10.1080/10298436.2017.1402598
|
[10] |
JENQ Y, SHAH S P. Two parameter fracture model for concrete[J]. Journal of Engineering Mechanics, 1985, 111 (10): 1227-1241. doi: 10.1061/(ASCE)0733-9399(1985)111:10(1227)
|
[11] |
BARENBLATT G I. The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks[J]. Journal of Applied Mathematics and Mechanics, 1959, 23 (3): 622-636. doi: 10.1016/0021-8928(59)90157-1
|
[12] |
BARENBLATT G I. The mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics, 1962, 7: 55-129.
|
[13] |
HILLERBORG A, MODEER M, PETERSSON P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6 (6): 773-781. doi: 10.1016/0008-8846(76)90007-7
|
[14] |
BRINCKER R, DAHL H. Fictitious crack model of concrete fracture[J]. Magazine of Concrete Research, 1989, 41 (147): 79-86. doi: 10.1680/macr.1989.41.147.79
|
[15] |
ULFKJæR J P, KRENK S, BRINCKER R. Analytical model for fictitious crack propagation in concrete beams[J]. Journal of Engineering Mechanics, 1995, 121 (1): 7-15. doi: 10.1061/(ASCE)0733-9399(1995)121:1(7)
|
[16] |
ELICES M, GUINEA G V, GOMEZ J, et al. The cohesive zone model: advantages, limitations and challenges[J]. Engineering Fracture Mechanics, 2002, 69 (2): 137-163. doi: 10.1016/S0013-7944(01)00083-2
|
[17] |
SONG S H, PAULINO G H, BUTTLAR W G. Simulation of crack propagation in asphalt concrete using an intrinsic cohesive zone model[J]. Journal of Engineering Mechanics, 2006, 132 (11): 1215-1223. doi: 10.1061/(ASCE)0733-9399(2006)132:11(1215)
|
[18] |
SONG S H, PAULINO G H, BUTTLAR W G. A bilinear cohesive zone model tailored for fracture of asphalt concrete considering viscoelastic bulk material[J]. Engineering Fracture Mechanics, 2006, 73 (18): 2829-2848. doi: 10.1016/j.engfracmech.2006.04.030
|
[19] |
ROESLER J, PAULINO G H, PARK K, et al. Concrete fracture prediction using bilinear softening[J]. Cement and Concrete Composites, 2007, 29 (4): 300-312. doi: 10.1016/j.cemconcomp.2006.12.002
|
[20] |
FERREIRA M D C, VENTURINI W S, HILD F. On the analysis of notched concrete beams: from measurement with digital image correlation to identification with boundary element method of a cohesive model[J]. Engineering Fracture Mechanics, 2011, 78 (1): 71-84. doi: 10.1016/j.engfracmech.2010.10.008
|
[21] |
KIM Y R. Cohesive zone model to predict fracture in bituminous materials and asphaltic pavements: state-of-the-art review[J]. International Journal of Pavement Engineering, 2011, 12 (4): 343-356. doi: 10.1080/10298436.2011.575138
|
[22] |
ZHOU Zheng-feng, PU Zhuo-heng, LIU Chao. Application of cohesive zone model to simulate reflective crack of asphalt pavement[J]. Journal of Traffic and Transportation Engineering, 2018, 18 (3): 1-10. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.03.002
|
[23] |
ROESLERJ, PAULINO G, GAEDICKE C, et al. Fracture behavior of functionally graded concrete materials for rigid pavements[J]. Transportation Research Record, 2007 (2037): 40-50.
|
[24] |
PARK K, PAULINO G H, ROESLER J R. Determination of the kink point in the bilinear softening model for concrete[J]. Engineering Fracture Mechanics, 2008, 75 (13): 3806-3818. doi: 10.1016/j.engfracmech.2008.02.002
|
[25] |
PARK K, PAULINO G H, ROESLER JR. Cohesive fracture model for functionally graded fiber reinforced concrete[J]. Cement and Concrete Reseach, 2010, 40: 956-965. doi: 10.1016/j.cemconres.2010.02.004
|
[26] |
GAEDICKE C, ROESLER J. Fracture-based method to determine flexural capacity of concrete beams on soil[J]. Road Materials and Pavement Design, 2010, 11 (2): 361-385. doi: 10.1080/14680629.2010.9690280
|
[27] |
GAEDICKE C, ROESLER J, EVANGELISTA JR F. Three-dimensional cohesive crack model prediction of the flexural capacity of concrete slabs on soil[J]. Engineering Fracture Mechanics, 2012, 94: 1-12. doi: 10.1016/j.engfracmech.2012.04.029
|
[28] |
GUAN Jun-feng, QING Long-bang, ZHAO Shun-bo. Research on numerical simulation on the whole cracking processes of three-point bending notch concrete beams[J]. Chinese Journal of Computational Mechanics, 2013, 30 (1): 143-148, 155. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201301023.htm
|
[29] |
LU W Y, HU S W. Effect of large crack-depth ratio on three-point bending concrete beam with single edge notch[J]. Materials Research Innovations, 2015, 19 (S8): 312-317.
|
[30] |
CAMANHO P P, DAVILA C G. Mix-mode decohesion finite elements for the simulation of delamination in composite materials[R]. Washington DC: NASA, 2002.
|