SHENG Xing-wang, ZHENG Wei-qi, ZHU Zhi-hui, YANG Ying, LI Shuai. Solar radiation time-varying temperature field and temperature effect on small radius curved rigid frame box girder bridge[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 24-34. doi: 10.19818/j.cnki.1671-1637.2019.04.003
Citation: SHENG Xing-wang, ZHENG Wei-qi, ZHU Zhi-hui, YANG Ying, LI Shuai. Solar radiation time-varying temperature field and temperature effect on small radius curved rigid frame box girder bridge[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 24-34. doi: 10.19818/j.cnki.1671-1637.2019.04.003

Solar radiation time-varying temperature field and temperature effect on small radius curved rigid frame box girder bridge

doi: 10.19818/j.cnki.1671-1637.2019.04.003
More Information
  • Author Bio:

    SHENG Xing-wang(1966-), male, professor, PhD, shengxingwang@163.com

    ZHU Zhi-hui(1979-), male, professor, PhD, zzhh0703@163.com

  • Received Date: 2019-02-25
  • Publish Date: 2019-08-25
  • The real time position of the sun was determined by using the theory of solar physics. Combining with the ray tracing algorithm, the time-varying light surfaces of structure were selected in real time, and the time-varying thermal boundary conditions of structure were obtained. Taking a small radius curved rigid frame box girder bridge in Shijiazhai Interchange of Yongshun to Jishou Expressway as an engineering background, a summer day with the highest temperature was chosen by referring to the local historical meteorological data, and the finite element simulation of three-dimensional transient solar radiation time-varying temperature field of small raduis curved rigid frame box girder bridge was realized with the consideration of solar radiation, long wave radiation, convective heat transfer, wind speed and other environmental conditions. The solar radiation time-varying temperature effect on the small radius curved rigid frame box girder bridge was obtained through the thermal-structural coupling analysis. Research result shows that under the action of time-varying solar radiation, due to the covering effect of flange plate of small radius curved rigid frame box girder bridge, the direct sunlight times of box girder webs are different. The maximum temperature difference at the webs of each section of box girder is 1.3 ℃. The vertical temperature gradient variation law of roof of small radius curved rigid frame box girder bridge is similar to that in the General Specifications for Design of Highway Bridges and Culverts (JTG D60—2015). The maximum temperature difference between the upper and lower surfaces of roof is 14.3 ℃, and the temperature change of lower surface of box girder roof is about 3 h behind that of upper surface of box girder roof. The maximum transverse tensile stress at the lower surface of small radius curved rigid frame box girder bridge roof appears to be 3.13 MPa, and the transverse tensile stresses of upper surface of roof and the outer surface of web also appear to be more than 2 MPa. The displacement change trend of girder end opposites to that of mid-span of small radius curved rigid frame box girder bridge, preliminary revealing a serpentine movement law of small radius curved rigid frame box girder bridge under the action of time-varying solar radiation.

     

  • loading
  • [1]
    Editorial Department of China Journal of Highway and Transport. Review on China's bridge engineering research: 2014[J]. China Journal of Highway and Transport, 2014, 27 (5): 1-96. (in Chinese).
    [2]
    CHEN Yan-jiang, WANG Li-bo, LI Yong. Research of temperature field and its effect of steel-concrete composite girder bridge[J]. Journal of Highway and Transportation Research and Development, 2014, 31 (11): 85-91. (in Chinese). doi: 10.3969/j.issn.1002-0268.2014.11.014
    [3]
    MENG Qing-ling, ZHU Jin-song. Fine temperature effect analysis-based time-varying dynamic properties evaluation of long-span suspension bridges in natural environments[J]. Journal of Bridge Engineering, 2018, 23 (10): 04018075-1-19. doi: 10.1061/(ASCE)BE.1943-5592.0001279
    [4]
    WANG Yong-bao, ZHAN Yu-lin, ZHAO Ren-da. Analysis of thermal behavior on concrete box-girder arch bridges under convection and solar radiation[J]. Advances in Structural Engineering, 2016, 19 (7): 1043-1059. doi: 10.1177/1369433216630829
    [5]
    GU Bin, CHEN Zhi-jian, CHEN Xin-di. Temperature gradients in concrete box girder bridge under effect of cold wave[J]. Journal of Central South University, 2014, 21: 1227-1241. doi: 10.1007/s11771-014-2057-6
    [6]
    ZHOU Guang-dong, YI Ting-hua, CHEN Bin, et al. Analysis of three-dimensional thermal gradients for arch bridge girders using long-term monitoring data[J]. Smart Structures and Systems, 2015, 15 (2): 469-488. doi: 10.12989/sss.2015.15.2.469
    [7]
    ZHAO Ren-da, WANG Yong-bao. Studies on temperature field boundary conditions for concrete box-girder bridges under solar radiation[J]. China Journal of Highway and Transport, 2016, 29 (7): 52-61. (in Chinese). doi: 10.3969/j.issn.1001-7372.2016.07.007
    [8]
    GAO Fei, CHEN Pan, WENG Shun, et al. Analysis of 3D temperature distribution of a structure subject to nonuniform solar radiation[J]. Journal of Civil Engineering and Management, 2018, 35 (4): 1-6. (in Chinese). doi: 10.3969/j.issn.2095-0985.2018.04.001
    [9]
    CHEN Bo, SUN Yu-zhou, WANG Gan-jun, et al. Assessment on time-varying thermal loading of engineering structures based on a new solar radiation model[J]. Mathematical Problems in Engineering, 2014, 2014: 1-15.
    [10]
    PENG You-song. Studies on theory of solar radiation thermal effects on concrete bridges with application[D]. Chengdu: Southwest Jiaotong University, 2007. (in Chinese).
    [11]
    ZHOU Guang-dong, YI Ting-hua. Thermal load in large-scale bridges: a state-of-the-art review[J]. International Journal of Distributed Sensor Networks, 2013, 2013: 1-17. doi: 10.1155/2013/469076
    [12]
    SUN Wen, WU Ya-ping, JI Ri-chen. Analysis of temperature effect of box girder under solar radiation in dry cold region[J]. Journal of Railway Engineering Society, 2016 (1): 65-69. (in Chinese). doi: 10.3969/j.issn.1006-2106.2016.01.013
    [13]
    XIAO Xin-hui, LIU Yang, GUO Xin, et al. Observation and study of temperature distribution in combination of high pier large span continuous and rigid frame bridge[J]. Journal of Railway Science and Engineering, 2014, 11 (1): 10-16. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201401003.htm
    [14]
    LIN Guo-tao, SU Bo. Numerical analysis of sunshine temperature effect on super high pier of mountain bridge[J]. Journal of Civil Engineering and Management, 2018, 35 (4): 112-116. (in Chinese). doi: 10.3969/j.issn.2095-0985.2018.04.018
    [15]
    WANG Jian, FANG Zhi. Temperature variation of concrete box girder bridge[J]. Journal of Hunan University (Natural Sciences), 2008, 35 (4): 23-28. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX200804004.htm
    [16]
    DONG Xu, DENG Zhen-quan, LI Shu-chen, et al. Research on sun light temperature field and thermal difference effect of long span box girder bridge with corrugated steel webs[J]. Engineering Mechanics, 2017, 34 (9): 230-238. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201709027.htm
    [17]
    ZHU Jin-song, MENG Qing-ling. Effective and fine analysis for temperature effect of bridges in natural environments[J]. Journal of Bridge Engineering, 2017, 22 (6): 04017017-1-19. doi: 10.1061/(ASCE)BE.1943-5592.0001039
    [18] LIU Jiang, LIU Yong-jian, FANG Jian-hong, et al. Vertical temperature gradient patterns of上-shaped steel-concrete composite girder in arctic-alpine plateau region[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (4): 32-44. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202101010.htm
    [19]
    LARSSON O, THELANDERSSON S. Estimating extreme values of thermal gradients in concrete structures[J]. Materials and Structures, 2011, 44 (8): 1491-1500.
    [20]
    BAO Zhong-xue. Research on creep shrink and temperature effect of high pier and small radius curved bridge[D]. Harbin: Harbin Institute of Technology, 2008. (in Chinese).
    [21]
    LU Wen-liang, JI Wen-yu, DU Jin-sheng. Temperature field and temperature effect of railway concrete box girder[J]. China Railway Science, 2006, 27 (6): 49-54. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK200606010.htm
    [22]
    KIM S H, CHO K I, WON J H, et al. A study on thermal behavior of curved steel box girder bridges considering solar radiation[J]. Archives of Civil and Mechanical Engineering, 2009, 9 (3): 59-76.
    [23]
    LAMM L O. A new analytic expression for the equation of time[J]. Solar Energy, 1981, 26 (5): 465-465.
    [24]
    SONG Zhi-wen, XIAO Jian-zhuang, SHEN Lu-ming. On temperature gradients in high-performance concrete box girder under solar radiation[J]. Advances in Structural Engineering, 2012, 15 (3): 399-415.
    [25]
    YAN Bin, LIU Shi, DAI Gong-lian, et al. Vertical nonlinear temperature distribution and temperature mode of unballasted track in typical areas of China[J]. Journal of the China Railway Society, 2016, 38 (8): 81-86. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201608012.htm
    [26]
    XU Feng. Study on the key factors of temperature effect of concrete box-girder bridges[D]. Wuhan: Huazhong University of Science and Technology, 2009. (in Chinese).
    [27]
    SONG Zhi-wen, XIAO Jian-zhuang, ZHAO Yong. Back-analysis of concrete thermal parameters based on experimental measurements[J]. Journal of Tongji University (Natural Science), 2010, 38 (1): 35-38. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201001008.htm
    [28]
    ZHANG Yu-han. The most unfavorable solar temperature field and thermal stress of long-span concrete box girder[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese).
    [29]
    YAN Bin, DAI Gong-lian, SU Hai-ting. A meteorological parameters-based prediction model of vertical temperature gradient of track plate[J]. Journal of South China University of Technology (Natural Science Edition), 2014, 42 (12): 9-13. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HNLG201412003.htm
    [30]
    GU Bin, CHEN Zhi-jian, CHEN Xin-di. Simulation analysis for solar temperature field of concrete box girder based on meteorological parameters[J]. Journal of Southeast University (Natural Science Edition), 2012, 42 (5): 950-955. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201205029.htm

Catalog

    Article Metrics

    Article views (2272) PDF downloads(1272) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return