Citation: | GU Xing-yu, CUI Bing-yan, XING Shi-qin, HAN Dong-dong. Comparison of numerical interconversion methods for relaxation modulus of asphalt mixture[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 1-10. doi: 10.19818/j.cnki.1671-1637.2019.05.001 |
[1] |
SCHAPERY R A. A simple collocation method for fitting viscoelastic models to experimental data[R]. Pasadena: California Institute of Technology, 1962.
|
[2] |
COST T L, BECKER E B. A multidata method of approximate Laplace transform inversion[J]. International Journal for Numerical Methods in Engineering, 1970, 2(2): 207-219. doi: 10.1002/nme.1620020206
|
[3] |
TABATABAEE H A, VELASQUEZ R, BAHIA H U. Modeling thermal stress in asphalt mixtures undergoing glass transition and physical hardening[J]. Transportation Research Record, 2012(2296): 106-114.
|
[4] |
MOON K H, MARASTEANU M O, TUROS M. Comparison of thermal stresses calculated from asphalt binder and asphalt mixture creep tests[J]. Journal of Materials in Civil Engineering, 2013, 25(8): 1059-1067. doi: 10.1061/(ASCE)MT.1943-5533.0000651
|
[5] |
PACHECO J E L, BAVASTRI C A, PEREIRA J T. Viscoelastic relaxation modulus characterization using Prony series[J]. Latin American Journal of Solids and Structures, 2015, 12(2): 420-445. doi: 10.1590/1679-78251412
|
[6] |
ZHAO Yan-qing, NI Yuan-bao, WANG Lei, et al. Viscoelastic response solutions of multilayered asphalt pavements[J]. Journal of Engineering Mechanics, 2014, 140(10): 1-8.
|
[7] |
LI Ling-lin, LI Wen-long, WANG Hao, et al. Investigation of Prony series model related asphalt mixture properties under different confining pressures[J]. Construction and Building Materials, 2018, 166: 147-157. doi: 10.1016/j.conbuildmat.2018.01.120
|
[8] |
PARK S W, SCHAPERY R A. Methods of interconversion between linear viscoelastic material functions. Part I—a numerical method based on Prony series[J]. International Journal of Solids and Structures, 1999, 36(11): 1653-1675. doi: 10.1016/S0020-7683(98)00055-9
|
[9] |
ZHU Yao-ting, SUN Lu, XU Hui-lin. L-curve based Tikhonov's regularization method for determining relaxation modulus from creep test[J]. Journal of Applied Mechanics, 2011, 78(3): 1-7.
|
[10] |
EBRAHIMI M G, SALEH M, GONZALEZ M M. Interconversion between viscoelastic functions using the Tikhonov regularization method and its comparisons with approximate techniques[J]. Road Materials and Pavement Design, 2014, 15(4): 820-840. doi: 10.1080/14680629.2014.924428
|
[11] |
EBRAHIMI M, SALEH M, GONZALEZ M M. Investigating applicability of complex modulus and creep compliance interconversion in asphalt concrete[J]. Advances in Civil Engineering Materials, 2014, 3(1): 107-121.
|
[12] |
PARK S W, KIM Y R. Fitting Prony-series viscoelastic models with power-law presmoothing[J]. Journal of Materials in Civil Engineering, 2001, 13(1): 26-32. doi: 10.1061/(ASCE)0899-1561(2001)13:1(26)
|
[13] |
MUN S, CHEHAB G R, KIM Y R. Determination of time-domain viscoelastic functions using optimized interconversion techniques[J]. Road Materials and Pavement Design, 2007, 8(2): 351-365. doi: 10.1080/14680629.2007.9690078
|
[14] |
MUN S, ZI G. Modeling the viscoelastic function of asphalt concrete using a spectrum method[J]. Mechanics of Time-Dependent Materials, 2010, 14(2): 191-202. doi: 10.1007/s11043-009-9102-0
|
[15] |
PARROT J M, DUPERRAY B. Exact computation of creep compliance and relaxation modulus from complex modulus measurements data[J]. Mechanics of Materials, 2008, 40: 575-565. doi: 10.1016/j.mechmat.2007.11.004
|
[16] |
CHEN Song-qiang, WANG Dong-shen, YI Jun-yan, et al. Implement the Laplace transform to convert viscoelastic functions of asphalt mixtures[J]. Construction and Building Materials, 2019, 203: 633-641. doi: 10.1016/j.conbuildmat.2019.01.116
|
[17] |
吕慧杰, 刘涵奇, 罗蓉. 基于单轴压缩蠕变试验求解沥青混合料松弛模量[J]. 武汉理工大学学报(交通科学与工程版), 2016, 40(6): 1067-1072. doi: 10.3963/j.issn.2095-3844.2016.06.025
LYU Hui-jie, LIU Han-qi, LUO Rong. Determination of relaxation modulus of asphalt mixtures using uniaxial compressive creep test[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2016, 40(6): 1067-1072. (in Chinese). doi: 10.3963/j.issn.2095-3844.2016.06.025
|
[18] |
FALCHETTO A C, MOON K H. Comparisons of analytical and approximate interconversion methods for thermal stress computation[J]. Canadian Journal of Civil Engineering, 2015, 42(10): 705-719. doi: 10.1139/cjce-2014-0558
|
[19] |
SCHAPERY R A, PARK S W. Methods of interconversion between linear viscoelastic material functions. Part II—an approximate analytical method[J]. International Journal of Solids and Structures, 1999, 36(11): 1677-1699. doi: 10.1016/S0020-7683(98)00060-2
|
[20] |
YIN Hao, CHEHAB G R, STOFFELS S M, et al. Use of creep compliance interconverted from complex modulus for thermal cracking prediction using the M-E pavement design guide[J]. International Journal of Pavement Engineering, 2010, 11(2): 95-105. doi: 10.1080/10298430802621531
|
[21] |
LOY R J, DE HOOG F R, ANDERSSEN R S. Interconversion of Prony series for relaxation and creep[J]. Journal of Rheology, 2015, 59(5): 1261-1270. doi: 10.1122/1.4929398
|
[22] |
TAREFDER R A, RAHMAN A S M A. Interconversion of dynamic modulus to creep compliance and relaxation modulus: numerical modeling and laboratory validation-final report[R]. Reno: University of Nevada, 2016.
|
[23] |
ZHAO Yan-qin, NI Yuan-bao, ZENG Wei-qiao. A consistent approach for characterising asphalt concrete based on generalised Maxwell or Kelvin model[J]. Road Materials and Pavement Design, 2014, 15(3): 674-690. doi: 10.1080/14680629.2014.889030
|
[24] |
HO C H, ROMERO P. Alternative function to represent relaxation modulus of viscoelastic materials[J]. Journal of Materials in Civil Engineering, 2012, 24(2): 152-158. doi: 10.1061/(ASCE)MT.1943-5533.0000378
|
[25] |
王志臣, 郭乃胜, 赵颖华, 等. 沥青混合料黏弹性主曲线模拟及换算[J]. 工程力学, 2017, 34(2): 242-248. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201702030.htm
WANG Zhi-chen, GUO Nai-sheng, ZHAO Ying-hua, et al. Viscoelastic master curve simulation and conversion of asphalt mixtures[J]. Engineering Mechanics, 2017, 34(2): 242-248. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201702030.htm
|
[26] |
ZHANG Wei-guang, CUI Bing-yan, GU Xing-yu, et al. Comparison of relaxation modulus converted from frequency-and time-dependent viscoelastic functions through numerical methods[J]. Applied Sciences, 2018, 8(12): 1-15.
|
[27] |
吕慧杰, 张诚, 刘涵奇, 等. 沥青混合料蠕变柔量转换松弛模量的新方法[J]. 公路交通科技, 2017, 34(11): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201711001.htm
LYU Hui-jie, ZHANG Cheng, LIU Han-qi, et al. A novel approach for converting creep compliance into relaxation modulus for asphalt mixtures[J]. Journal of Highway and Transportation Research and Development, 2017, 34(11): 1-7. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201711001.htm
|
[28] |
ZHAO Yan-qing, TANG Ji-min, LIU Hui. Construction of triaxial dynamic modulus master curve for asphalt mixtures[J]. Construction and Building Materials, 2012, 37: 21-26. doi: 10.1016/j.conbuildmat.2012.06.067
|
[29] |
田小革, 刘良骏, 于发袂, 等. 老化沥青混合料的松弛模量模型[J]. 公路交通科技, 2015, 32(4): 1-6. doi: 10.3969/j.issn.1002-0268.2015.04.001
TIAN Xiao-ge, LIU Liang-jun, YU Fa-mei, et al. Relaxation modulus model of aged asphalt mixture[J]. Journal of Highway and Transportation Research and Development, 2015, 32(4): 1-6. (in Chinese). doi: 10.3969/j.issn.1002-0268.2015.04.001
|
[30] |
LUO Rong, LYU Hui-jie, LIU Han-qi. Development of Prony series models based on continuous relaxation spectrums for relaxation moduli determined using creep tests[J]. Construction and Building Materials, 2018, 168: 758-770. doi: 10.1016/j.conbuildmat.2018.02.036
|
[31] |
王志臣, 郭乃胜, 赵颖华, 等. 沥青混合料松弛和延迟时间谱的确定与换算[J]. 北京工业大学学报, 2019, 45(2): 168-176. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201902009.htm
WANG Zhi-chen, GUO Nai-sheng, ZHAO Ying-hua, et al. Determination and conversion of relaxation and retardation time spectrum of asphalt mixtures[J]. Journal of Beijing University of Technology, 2019, 45(2): 168-176. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201902009.htm
|