Citation: | WANG Chun-sheng, ZHANG Jing-wen, DUAN Lan, TAN Chen-xin. Research progress and engineering application of long lasting high performance weathering steel bridges[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 1-26. doi: 10.19818/j.cnki.1671-1637.2020.01.001 |
[1] |
WANG Chun-sheng, DUAN Lan, ZHU Jing-wei, et al. Research on innovative high performance steel bridge and tubular flange composite girder bridge[C]//CHEN Ai-rong, RUAN Xin. The First National Conference on Bridge Maintenance and Safety. Beijing: China Communications Press, 2013: 157-176. (in Chinese).
|
[2] |
LIU Yu-qing, CHEN Ai-rong. Development and design essentials of weathering steel bridges[J]. Bridge Construction, 2003(5): 39-41, 45. (in Chinese). doi: 10.3969/j.issn.1003-4722.2003.05.011
|
[3] |
ALBRECHT P, CHENG J G. Fatigue tests of 8-yr weathered A588 steel weldment[J]. Journal of Structural Engineering, 1983, 109(9): 2048-2065. doi: 10.1061/(ASCE)0733-9445(1983)109:9(2048)
|
[4] |
ALBRECHT P, SIDANI M. Fatigue of eight-year weathered A588 steel stiffeners in salt water[J]. Journal of Structural Engineering, 1989, 115(7): 1756-1767. doi: 10.1061/(ASCE)0733-9445(1989)115:7(1756)
|
[5] |
ALBRECHT P, LENWARI A. Fatigue strength of weathered A588 steel beams[J]. Journal of Bridge Engineering, 2009, 14(6): 436-443. doi: 10.1061/(ASCE)1084-0702(2009)14:6(436)
|
[6] |
ALBRECHT P, COBURN S K, WATTAR F M, et al. Guidelines for the use of weathering steel in bridges (NCHRP 314)[R]. Washington DC: Transportation Research Board, 1989.
|
[7] |
Federal Highway Administration. Uncoated weathering steel in structures[R]. Washington DC: Federal Highway Administration, 1989.
|
[8] |
WANG Chun-sheng, DUAN Lan, WANG Ji-ming, et al. Bending behavior and ductility test of high performance steel beam based on hybrid design[J]. China Journal of Highway and Transport, 2012, 25(2): 81-89. (in Chinese). doi: 10.3969/j.issn.1001-7372.2012.02.014
|
[9] |
WANG Chun-sheng, DUAN Lan, ZHENG Li, et al. Fatigue crack growth rate tests of high performance steel HPS485W for bridges[J]. Engineering Mechanics, 2013, 30(6): 212-216. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201306033.htm
|
[10] |
WANG Chun-sheng, DUAN Lan, HU Jing-yu, et al. Fracture and toughness tests study of high performance steel HPS485W for bridge engineering[J]. Engineering Mechanics, 2013, 30(8): 54-59. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201308011.htm
|
[11] |
MISAWA T, ASAMI K, HASHIMOTO K, et al. The mechanism of atmospheric rusting and the protective amorphous rust on low alloy steel[J]. Corrosion Science, 1974, 5(20): 279-289.
|
[12] |
LIU Guo-chao, DONG Jun-hua, HAN En-hou, et al. Progress in research on rust layer of weathering steel[J]. Corrosion Science and Protection Technology, 2006, 18(4): 268-272. (in Chinese). doi: 10.3969/j.issn.1002-6495.2006.04.010
|
[13] |
MORCILLO M, CHICO B, DÍAZ I, et al. Atmospheric corrosion data of weathering steels. A review[J]. Corrosion Science, 2013, 77: 6-24. doi: 10.1016/j.corsci.2013.08.021
|
[14] |
YANN H. Atmospheric corrosion study of weathering steel using sensor technology[D]. Boca Raton: Florida Atlantic University, 2007.
|
[15] |
ZHANG Q C, WU J S, WANG J J, et al. Corrosion behavior of weathering steel in marine atmosphere[J]. Materials Chemistry and Physics, 2002, 77(2): 603-608.
|
[16] |
CHEN Ai-hua, XU Jing-qiu, LI Ran, et al. Corrosion resistance of high performance weathering steel for bridge building applications[J]. Journal of Iron and Steel Research, 2012, 19(6): 59-63. doi: 10.1016/S1006-706X(12)60128-9
|
[17] |
OKADA H, HOSOI Y, YUKAWA K I, et al. Structure of the rust formed on low alloy steels in atmospheric corrosion[J]. Tetsu-to-Hagane, 2010, 55(5): 355-365.
|
[18] |
MISAWA T, KYUNO T, SUËTAKA W, et al. The mechanism of atmospheric rusting and the effect of Cu and P on the rust formation of low alloy steels[J]. Corrosion Science, 1971, 11(1): 35-48. doi: 10.1016/S0010-938X(71)80072-0
|
[19] |
TOWNSEND H E, SIMPSON T C, JOHONSON G L. Structure of rust on weathering steel in rural and industrial environments[J]. Corrosion Science, 1994, 50(7): 546-554. doi: 10.5006/1.3294356
|
[20] |
YAMASHITA M, MIYUKI H, MATSUDA Y, et al. The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century[J]. Corrosion Science, 1994, 36(2): 283-299. doi: 10.1016/0010-938X(94)90158-9
|
[21] |
KATAYAMA H, YAMAMOTO M, KODAMA T. Degradation behavior of protective rust layer in chloride solution[J]. Corrosion Engineering, 2000, 49(1): 41-44. doi: 10.3323/jcorr1991.49.41
|
[22] |
CHOI Y S, KIM J G. Aqueous corrosion behavior of weathering steel and carbon steel in acid-chloride environments[J]. Corrosion, 2012, 56(12): 1202-1210.
|
[23] |
DIAZ I, CANO H, CHICO B, et al. Some clarifications regarding literature on atmospheric corrosion of weathering steels[J]. International Journal of Corrosion, 2012, 2012: 1-9.
|
[24] |
ZHANG Quan-cheng, WU Jian-sheng, CHEN Jia-guang, et al. Analysis on the corrosion rust of weathering steel exposed in atmosphere[J]. Journal of Chinese Society for Corrosion and Protection, 2001, 21(5): 297-300. (in Chinese). doi: 10.3969/j.issn.1005-4537.2001.05.007
|
[25] |
SUZUKI I, HISAMATSU Y, MASUKO N. Nature of atmospheric rust on iron[J]. Journal of Electrochemical Society, 1980, 127(10): 2210. doi: 10.1149/1.2129376
|
[26] |
STRATMANN M, BOHNENKAMP K, RAMCHANDRAN T. The influence of copper upon the atmospheric corrosion of iron[J]. Corrosion Science, 1987, 27(9): 905-926. doi: 10.1016/0010-938X(87)90058-8
|
[27] |
ASAMI K, KIKUCHI M. In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years[J]. Corrosion Science, 2003, 45(11): 2671-2688. doi: 10.1016/S0010-938X(03)00070-2
|
[28] |
NISHIMURA T, KATAYAMA H, NODA K, et al. Effect of Co and Ni on the corrosion behavior of low alloy steels in wet/dry environments[J]. Corrosion Science, 2000, 42(9): 1611-1621. doi: 10.1016/S0010-938X(00)00018-4
|
[29] |
NISHIMURA T, KODAMA T. Clarification of chemical state for alloying elements in iron rust using a binary-phase potential-pH diagram and physical analyses[J]. Corrosion Science, 2003, 45(5): 1073-1084. doi: 10.1016/S0010-938X(02)00186-5
|
[30] |
NISHIMURA T. Rust formation and corrosion performance of Si- and Al-bearing ultrafine grained weathering steel[J]. Corrosion Science, 2008, 50(5): 1306-1312. doi: 10.1016/j.corsci.2008.01.025
|
[31] |
KIM K Y, HWANG Y H, YOO J Y. Effect of silicon content on the corrosion properties of calcium-modified weathering steel in a chloride environment[J]. Corrosion, 2002, 58(7): 570-583. doi: 10.5006/1.3277648
|
[32] |
ASAMI K, KIKUCHI M. Characterization of rust layers on weathering steels air-exposed for a long period[J]. Journal of the Japan Institute of Metals, 2002, 66(6): 649-656.
|
[33] |
ZHANG Quan-cheng, MA Feng, ZHENG Wen-long. Bonding strength between the substrate and protective rust layer of weathering-steel[J]. Mechanical Engineering Materials, 2004, 28(6): 30-32. (in Chinese). doi: 10.3969/j.issn.1000-3738.2004.06.011
|
[34] |
ZHANG Quan-cheng, WU Jian-sheng. Mechanical properties of protective rust layer formed on surface of weathering steel panels[J]. Journal of Iron and Steel Research, 2006, 18(3): 42-45. (in Chinese). doi: 10.3321/j.issn:1001-0963.2006.03.011
|
[35] |
JIANG Chuan-hai. Whisker reinforced aluminum composite residual stress and steel rust residual stress[D]. Shanghai: Shanghai Jiao Tong University, 2001. (in Chinese).
|
[36] |
WANG Shu-tao, GAO Ke-wei, YANG Shan-wu, et al. Mechanical properties and thermal shock resistance of rust layer formed on low carbon bainitic steel after being exposed in Qingdao atmosphere for one year[J]. Corrosion Science and Protection Technology, 2010, 22(1): 9-13. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FSFJ201001004.htm
|
[37] |
WANG Lei, DONG Jun-hua, KE Wei. Corrosion behavior of MnCu cost-effective weathering steel under cyclic load in a wet/dry cyclic corrosion environment[J]. Journal of Chinese Society for Corrosion and Protection, 2010, 30(4): 257-261. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGFF201004003.htm
|
[38] |
GAO K, LI D, PANG X, et al. Corrosion behaviour of low-carbon bainitic steel under a constant elastic load[J]. Corrosion Science, 2010, 52(10): 3428-3434. doi: 10.1016/j.corsci.2010.06.021
|
[39] |
KAYSER C R, SWANSON J A, LINZELL D G. Characterization of material properties of HPS-485W (70W) TMCP for bridge girder applications[J]. Journal of Bridge Engineering, 2006, 11(1): 99-108. doi: 10.1061/(ASCE)1084-0702(2006)11:1(99)
|
[40] |
CHEN H T, GRONDIN G Y, DRIVER R G. Fatigue properties of high performance steel[C]//WIT Press. First International Conference on Fatigue Damage of Materials Experiment and Analysis, Fatigue Damage of Materials. Toronto: WIT Press, 2003: 181-191.
|
[41] |
CHEN H T, GRONDIN G Y, DRIVER R G. Characterization of fatigue properties of ASTM A709 high performance steel[J]. Journal of Constructional Steel Research, 2007, 63(6): 838-848. doi: 10.1016/j.jcsr.2006.08.002
|
[42] |
BARTH K E, WHITE D W, BOBB B M. Negative bending resistance of HPS70W girders[J]. Journal of Constructional Steel Research, 2000, 53(1): 1-31. doi: 10.1016/S0143-974X(99)00037-1
|
[43] |
SAUSE R, FAHNESTOCK L A. Strength and ductility of HPS-100W I-girders in negative flexure[J]. Journal of Bridge Engineering, 2001, 6(5): 316-323. doi: 10.1061/(ASCE)1084-0702(2001)6:5(316)
|
[44] |
SALEM E S, SAUSE R. Flexural strength and ductility of highway bridge I-girders fabricated from HPS-100W steel[D]. Bethlehem: Lehigh University, 2004.
|
[45] |
YAKEL A J, MANS P, AZIZINAMINI A. Flexural capacity and ductility of HPS-70W bridge girders[J]. Engineering Journal, 2002, 39: 38-51.
|
[46] |
ZHENG Li. Shear performance of hybrid girders fabricated using high performance steel[D]. Xi'an: Chang'an University, 2013. (in Chinese).
|
[47] |
TAKAMORI H. Improving fatigue strength of welded joints[D]. Bethlehem: Lehigh University, 2000.
|
[48] |
WANG Chun-sheng, WANG Yu-zhu, CUI Bing, et al. Experiment on effect of stress ratio on out-of-plane distortion-induced fatigue performance of web gaps in steel bridges[J]. China Journal of Highway and Transport, 2017, 30(3): 72-81. (in Chinese). doi: 10.3969/j.issn.1001-7372.2017.03.008
|
[49] |
TAKABE M, OHYA M, AJIKI S. Estimation of quantity of Cl- from deicing salts on weathering steels used for bridges[J]. Steel Structures, 2008, 8(2): 73-81.
|
[50] |
BD 7/01—1981, design manual for roads and bridges—weathering steel for highway structures[S].
|
[51] |
Corus Construction and Industrial. Weathering steel bridges[R]. London: Corus Construction and Industrial, 2010.
|
[52] |
KRIV V. Design of corrosion allowances on structures from weathering steel[J]. Procedia Engineering, 2012, 40: 235-240. doi: 10.1016/j.proeng.2012.07.086
|
[53] |
YAMADA K. Japanese experience with weathering steel bridges[R]. Nagoya: Nagoya University, 1983.
|
[54] |
Liaoning Provincial Transportation Investment Group. China Railway Baoji Bridge Group Co., Ltd. Ansteel Research Institute of Iron and Steel, et al. Technology guide for construction of highway bridge weathering steel welding[R]. Shenyang: Liaoning Provincial Transportation Investment Group, 2015. (in Chinese).
|
[55] |
MCDAD B, LAFFREY D C, DAMMANN M, et al. Performance of weathering steel in TxDOT bridges[R]. Austin: Texas Department of Transportation, 1999.
|
[56] |
TAO Xiao-yan, SHI Zhi-qiang, HAN Ji-yue, et al. Experimental research on high strength bolted connection of weathering steel bridge[J]. Steel Construction, 2018, 33(1): 105-108. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG201801022.htm
|
[57] |
SHI Zhen-jia, WANG Lei, CHEN Nan, et al. Current situation and development trend of weathering steel surface rust layer and its stabilization treatment, corrosion science and protection technology[J]. Corrosion Science and Protection Technology, 2015, 27(5): 503-508. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-FSFJ201505021.htm
|
[58] |
CRAMPTON D D, HOLLOWAY K P, FRACZEK J. Assessment of weathering steel bridge performance in Iowa and development of inspection and maintenance techniques[R]. Iowa: Iowa Department of Transportation, 2012.
|
[59] |
HARA S, KAMIMURA T, MIYUKI H, et al. Taxonomy for protective ability of rust layer using its composition formed on weathering steel bridge[J]. Corrosion Science, 2007, 49(3): 1131-1142. doi: 10.1016/j.corsci.2006.06.016
|
[60] |
WANG Chun-sheng, CHANG Quan-lu, ZHAI Xiao-liang, et al. Design and structural analysis of tubular flange composite girder bridge[J]. Steel Construction, 2015, 30(6): 17-21. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GJIG201506005.htm
|
[61] |
ZHU Jin-song, GUO Xiao-yu, KANG Jing-fu, et al. Research on corrosion behavior, mechanical property and application of weathering steel in bridges[J]. China Journal of Highway and Transport, 2019, 32(5): 1-16. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201905002.htm
|
[62] |
TAMAKI Y, SHIMOZATO T, ARIZUMI Y, et al. Evaluation of corrosion deterioration of weathering steel bridge under the environmental corrosiveness[C]//Taylor and Francis. Proceedings of the 5th International Conference on Bridge Maintenance, Safety, Management and Life-cycle Optimization. London: Taylor and Francis, 2010: 3569-3575.
|