LIU Yong-jian, LIU Jiang. Review on temperature action and effect of steel-concrete composite girder bridge[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 42-59. doi: 10.19818/j.cnki.1671-1637.2020.01.003
Citation: LIU Yong-jian, LIU Jiang. Review on temperature action and effect of steel-concrete composite girder bridge[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 42-59. doi: 10.19818/j.cnki.1671-1637.2020.01.003

Review on temperature action and effect of steel-concrete composite girder bridge

doi: 10.19818/j.cnki.1671-1637.2020.01.003
More Information
  • Author Bio:

    LIU Yong-jian(1966-), male, professor, PhD, liuyongjian@chd.edu.cn

  • Received Date: 2019-09-12
  • Publish Date: 2020-02-25
  • To understand the temperature action and effect of composite girder bridge in depth, the research status of domestic and overseas, including the temperature action and effect of hydration heat in construction stage, the temperature action patterns and finding values methods in the operation stage, and the calculation methods of temperature effect, was summarized and analyzed. The subsequent research emphases and directions were discussed. Research result shows that the hydration heat temperature effect is an important reason for the early cracking of decks in cast-in-situ composite girder bridges. The accurate selection of applicable hydration heat model and the consideration of the effect of temperature history on the elastic modulus and tensile strength of hardening concrete and the connection stiffness of studs are the keys to accurately calculate the hydration heat temperature effect of composite girder. Three temperature action patterns, including uniform temperature, positive and negative temperature gradients, are generally taken into consideration on the composite girder bridge in the operation environment. The specifications of temperature action patterns and values of composite girder bridges are not coincident due to the differences in climate environments and research histories in different countries. Additionally, the temperature gradients are not obtained based on the statistical analysis and the existing historical meteorological data resources are not fully utilized. The temperature effect calculations of composite girder bridges are mostly based on the finite element numerical simulation. The analytical calculation methods for solving the temperature effect of composite girders are also improved, from taking no account of the interfacial slip and simple steel-concrete uniform temperature difference to considering the interfacial slip and arbitrary temperature distribution of steel and concrete. However, the theoretical model for solving the temperature effect of composite girder with arbitrary boundaries should be strengthened. The future research directions of composite girder bridge temperature problem should focus on the composite girder temperature action pattern based on effect classification, the in-depth understanding the temperature self-generated and secondary effects from the mechanism, and strengthening the long-term temperature measurement to determine the representative values of temperature actions by statistical analysis, as well as fully using the historical meteorological data of the meteorological departments in various regions of China to study the regional differences of the temperature action values.

     

  • loading
  • [1]
    NIE Jian-guo, TAO Mu-xuan, WU Li-li, et al. Advances of research on steel-concrete composite bridges[J]. China Civil Engineering Journal, 2012, 45(6): 110-122. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201206016.htm
    [2]
    LIU Yong-jian, GAO Yi-min, ZHOU Xu-hong, et al. Technical and economic analysis in steel-concrete composite girder bridges with small and medium span[J]. China Journal of Highway and Transport, 2017, 30(3): 1-13. (in Chinese). doi: 10.3969/j.issn.1001-7372.2017.03.001
    [3]
    NIE Jian-guo, WANG Yu-hang. Research status on fatigue behavior of steel-concrete composite beams[J]. Engineering Mechanics, 2012, 29(6): 1-11. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201206003.htm
    [4]
    LIU Yong-jian, LIU Jiang, ZHANG Ning. Review on solar thermal actions of bridge structures[J]. China Civil Engineering Journal, 2019, 52(5): 59-78. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201905006.htm
    [5]
    WITTFOHT H. Reasons for the destruction of the Cannavino Bridge in Italy during construction[J]. World Bridges, 1986(4): 61-72. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GWQL198604006.htm
    [6]
    HECKEL R. The Fourth Danube Bridge in Vienna—damage and repair[J]. Development of Bridge Design and Construction Process, 1971: 588-598.
    [7]
    LIU Xing-fa. Analysis of Temperature Stress of Concrete Structure[M]. Beijing: China Communications Press, 1991. (in Chinese).
    [8]
    NIE Jian-guo. Steel-Concrete Composite Structure Bridge[M]. Beijing: China Communications Press, 2011. (in Chinese).
    [9]
    ZHANG Ning, ZHOU Xin, LIU Yong-jian, et al. In-situ test on hydration heat temperature of box girder based on array measurement[J]. China Civil Engineering Journal, 2019, 52(3): 76-86. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201903008.htm
    [10]
    CHOI S, CHA S W, OH B H, et al. Thermo-hygro-mechanical behavior of early-age concrete deck in composite bridge under environmental loadings. Part 1: temperature and relative humidity[J]. Materialsand Structures, 2011, 44(7): 1325-1346. doi: 10.1617/s11527-011-9751-8
    [11]
    ZHU Bo-fang. Thermal Stresses and Temperature Control of Mass Concrete[M]. Beijing: China Electric Power Press, 2012. (in Chinese).
    [12]
    CRSITOFARI C, NOTTON G, LOUCHE A. Study of the thermal behaviour of a production unit of concrete structural components[J]. Applied Thermal Engineering, 2004, 24(7): 1087-1101. doi: 10.1016/S1359-4311(03)00161-3
    [13]
    SCHUTTER G D. Finite element simulation of thermal cracking in massive hardening concrete elements using degree of hydration-based material laws[J]. Computers and Structures, 2002, 80(27-30): 2035-2042. doi: 10.1016/S0045-7949(02)00270-5
    [14]
    ULM F J, COUSSY O. Modeling of thermochemomechanical couplings of concrete at early ages[J]. Journal of Engineering Mechanics, 1995, 121(7): 785-794. doi: 10.1061/(ASCE)0733-9399(1995)121:7(785)
    [15]
    BAZANT Z P. Constitutive equation for concrete creep and shrinkage based on thermodynamics of multiphase system[J]. Materials and Structures, l970, 3(13): 3-36.
    [16]
    DE SCHUTTER G, TAERWE L. Degree of hydration-based description of mechanical properties of early age concrete[J]. Materials and Structures, 1996, 29(6): 335-344. doi: 10.1007/BF02486341
    [17]
    TOPKAYA C, YURA J A, WILLIAMSON E B. Composite shear stud strength at early concrete ages[J]. Journal of Structural Engineering, 2004, 130(6): 952-960. doi: 10.1061/(ASCE)0733-9445(2004)130:6(952)
    [18]
    SUBRAMANIAM K V, KUNIN J, CURTIS R, et al. Influence of early temperature rise on movements and stress development in concrete decks[J]. Journal of Bridge Engineering, 2010, 15(1): 108-116. doi: 10.1061/(ASCE)1084-0702(2010)15:1(108)
    [19]
    GARA F, LEONI G, DEZI L. Slab cracking control in continuous steel-concrete bridge decks[J]. Journal of Bridge Engineering, 2013, 18(12): 1319-1327. doi: 10.1061/(ASCE)BE.1943-5592.0000459
    [20]
    CHOI S, CHA S W, OH B H, et al. Thermo-hygro-mechanical behavior of early-age concrete deck in composite bridge under environmental loadings. Part 2: strain and stress[J]. Materials and Structures, 2011, 44(7): 1347-1367. doi: 10.1617/s11527-011-9752-7
    [21]
    BERTAGNOLI G, GINO D, MARTINELLI E. A simplified method for predicting early-age stresses in slabs of steel-concrete composite beams in partial interaction[J]. Engineering Structures, 2017, 140: 286-297. doi: 10.1016/j.engstruct.2017.02.058
    [22]
    LEBET J P, DUCRET J M. Experimental and theoretical study of the behaviour of composite bridges during construction[J]. Journal of Constructional Steel Research, 1998, 46(1-3): 69-70. doi: 10.1016/S0143-974X(98)00093-5
    [23]
    LEBET J P, DUCRET J M. Early concrete cracking of composite bridges during construction[C]//ASCE. Proceedings of the Conference: Composite Construction in Steel and Concrete. New York: ASCE, 2000: 13-24.
    [24]
    ANSNAES V, ELGAZZAR H. Concrete cracks in composite bridges[R]. Stockholm: Royal Institute of Technology, 2012.
    [25]
    ZUK W. Thermal behavior of composite bridges—insulated and uninsulated[J]. Highway Research Record, 1965(76): 231-253.
    [26]
    BERWANGER C. Transient thermal behavior of composite bridges[J]. Journal of Structural Engineering, 1983, 109(10): 2325-2339. doi: 10.1061/(ASCE)0733-9445(1983)109:10(2325)
    [27]
    DILGER W H, GHALI A, CHAN M, et al. Temperature stresses in composite box girder bridges[J]. Journal of Structural Engineering, 1983, 109(6): 1460-1478. doi: 10.1061/(ASCE)0733-9445(1983)109:6(1460)
    [28]
    FU H C, NG S F, CHEUNG M S. Thermal behavior of composite bridges[J]. Journal of Structural Engineering, 1989, 116(12): 3302-3323.
    [29]
    EMERSON M. Bridge temperature estimated from the shade temperature[R]. Berkshire: Department of Transportation, 1976.
    [30]
    EMERSON M. Thermal movements in concrete bridges—field measurements and methods of prediction[R]. Detroit: American Concrete Institute, 1981.
    [31]
    IMBSEN R A, VANDERSHAF D E, SCHAMBER R A, et al. Thermal effects in concrete bridge superstructures[R]. Washington DC: TRB, 1985.
    [32]
    MOORTY S, ROEDER C W. Temperature-dependent bridge movements[J]. Journal of Structural Engineering, 1992, 118(4): 1090-1105. doi: 10.1061/(ASCE)0733-9445(1992)118:4(1090)
    [33]
    MOORTY S. Thermal movements in bridges[D]. Seattle: University of Washington, 1991.
    [34]
    ROEDER C W. Thermal movement design procedure for steeland concrete bridges[R]. Washington DC: National Cooperative Highway Research Program, 1998.
    [35]
    ROEDER C W. Thermal movement design procedure for steel and concrete bridges[R]. Washington DC: TRB, 2002.
    [36]
    ROEDER C W. Proposed design method for thermal bridge movements[J]. Journal of Bridge Engineering, 2003, 8(1): 12-19. doi: 10.1061/(ASCE)1084-0702(2003)8:1(12)
    [37]
    SUN Guo-chen, GUAN Rong-cai, JIANG Ying-min, et al. Sunshine-induced temperature distribution on cross section of steel-concrete composite beams[J]. Engineering Mechanics, 2006, 23(11): 122-127, 138. (in Chinese). doi: 10.3969/j.issn.1000-4750.2006.11.020
    [38]
    CHEN Quan. Effects of thermal loads on Texas steel bridges[D]. Austin: University of Texas at Austin, 2008.
    [39]
    LIU Jiang, LIU Yong-jian, FANG Jian-hong, et al. Vertical temperature gradient patterns of上-shaped steel-concrete composite girder in arctic-alpine region[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 32-44. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.04.004
    [40]
    SHENG Xing-wang, ZHENG Wei-qi, ZHU Zhi-hui, et al. Solar radiation time-varying temperature field and temperature effect on small radius curved rigid frame box girder bridge[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 24-34. (in Chinese). doi: 10.3969/j.issn.1671-1637.2019.04.003
    [41]
    CHEN Yan-jiang, WANG Li-bo, LI Yong. Research of temperature field and its effect of steel-concrete composite girder bridge[J]. Journal of Highway and Transportation Research and Development, 2014, 31(11): 85-91. (in Chinese). doi: 10.3969/j.issn.1002-0268.2014.11.014
    [42]
    PRIESTLEY M J N. Design of concrete bridges for temperature gradients[J]. Journal of the American Concrete Institute, 1978, 75(5): 209-217.
    [43]
    KENNEDY J B, SOLIMAN M H. Temperature distribution in composite bridges[J]. Journal of Structure Engineering, 1987, 113(3): 475-82. doi: 10.1061/(ASCE)0733-9445(1987)113:3(475)
    [44]
    LIU Jiang, LIU Yong-jian, JIANG Lei, et al. Long-term field test of temperature gradients on the composite girder of a long-span cable-stayed bridge[J]. Advances in Structural Engineering, 2019, 22(13): 2785-2798. doi: 10.1177/1369433219851300
    [45]
    MAES M A, DILGER W H, BALLYK P D. Extreme values of thermal loading parameters in concrete bridges[J]. Canadian Journal of Civil Engineering, 1992, 19(6): 935-946. doi: 10.1139/l92-112
    [46]
    LI Dong-ning, MAES M A, DILGER W H. Thermal design criteria for deep prestressed concrete girders based on data from Confederation Bridge[J]. Canadian Journal of Civil Engineering, 2004, 31(5): 813-825. doi: 10.1139/l04-041
    [47]
    TAO Chong, XIE Xu, SHEN Yong-gang, et al. Study on temperature gradient of concrete box girder based on probability analysis[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(8): 1353-1361. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201408002.htm
    [48]
    SHI Dao-ji. Practical Extremum Statistical Method[M]. Tianjin: Tianjin Science and Technology Press, 2006. (in Chinese).
    [49]
    LU Nai-wei, LIU Yang, XIAO Xin-hui. Extrapolating method of extreme load effects on long-span bridge under actual traffic loads[J]. Journal of Traffic and Transportation Engineering, 2018, 18(5): 47-55. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.05.005
    [50]
    NIE Jian-guo, SHEN Ju-min. Influence of slip effect on bending strength of steel-concrete composite beams and its calculation[J]. China Civil Engineering Journal, 1997, 30(1): 31-36. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC199701005.htm
    [51]
    WANG Da, WANG Hai-zhu, LIU Yang. In comparison with vertical temperature gradient effects of steel-concrete composite bridge deck in Chinese, American and EU Codes[J]. Industrial Construction, 2016, 46(10): 163-168, 173. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201610033.htm
    [52]
    SU Jing-hai, DUAN Shu-jin. Study on sunshine temperature field of double steel-concrete composite box girder by solar radiation[J]. Journal of Shijiazhuang Tiedao University (Natural Science), 2012, 25(2): 6-10, 80. (in Chinese). doi: 10.3969/j.issn.2095-0373.2012.02.002
    [53]
    SU Jing-hai, DUAN Shu-jin. Study of temperature effects of double steel-concrete composite box girder by solar radiation[J]. Journal of Shijiazhuang Tiedao University (Natural Science), 2013, 26(4): 11-14. (in Chinese). doi: 10.3969/j.issn.2095-0373.2013.04.003
    [54]
    CHEN Xiao-qiang, LIU Qi-wei, ZHU Jun. Measurement and theoretical analysis of solar temperature field in steel-concrete composite girder[J]. Journal of Southeast University (English Edition), 2009, 25(4): 513-517.
    [55]
    ZHAO Pin, YE Jian-shu. Analysis of transverse temperature effects on the deck of box girder with corrugated steel webs[J]. Journal of Harbin Engineering University, 2019, 40(5): 974-978. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201905017.htm
    [56]
    DONG Xu, DENG Zhen-quan, LI Shu-chen, et al. Research on sun light temperature field and thermal difference effect of long span box girder bridge with corrugated steel webs[J]. Engineering Mechanics, 2017, 34(9): 230-238. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201709027.htm
    [57]
    GUO Xiang-fei. Research on temperature effect of prestressed concrete box girder with corrugated steel webs[D]. Xi'an: Chang'an University, 2011. (in Chinese).
    [58]
    ZHOU Liang, LU Yuan-chun, LI Xue-feng. Calculation of temperature stress of steel-concrete composite beam[J]. Journal of Highway and Transportation Research and Development, 2012, 29(5): 83-88. (in Chinese). doi: 10.3969/j.issn.1002-0268.2012.05.014
    [59]
    LIU Yong-jian, LIU Jiang, ZHANG Ning, et al. Analytical solution of temperature effects of steel-concrete composite girder[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 9-19. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.04.002
    [60]
    WU Xun, CHEN Jing-wei, XIAO Chun, et al. Study on shear effect caused by temperature and shrinkage on the interface of steel-concrete composite beams[J]. Structural Engineers, 2009, 25(1): 41-44, 54. (in Chinese). doi: 10.3969/j.issn.1005-0159.2009.01.009
    [61]
    CHEN Yu-ji, YE Mei-xin. Analyses of responses of composite girders under the action of temperature[J]. China Railway Science, 2001, 22(5): 48-53. (in Chinese). doi: 10.3321/j.issn:1001-4632.2001.05.008
    [62]
    CHEN Yu-ji, YE Mei-xin. Temperature responses of steel-concrete continuous composite girders[J]. Journal of Central South University (Natural Science), 2004, 35(1): 142-146. (in Chinese). doi: 10.3969/j.issn.1672-7207.2004.01.028
    [63]
    ZHU Kun-ning, WAN Shui. Interfacial shear stress of FRP-Steel composite beams subjected to temperature and load action[J]. Journal of PLA University of Science and Technology (Natural Science Edition), 2011, 12(4): 387-392. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JFJL201104016.htm
    [64]
    ZHOU Yong-chao, HU Sheng-neng, SONG Lei, et al. Effect analysis of steel-concrete composite beam caused by sudden change of temperature[J]. Journal of Traffic and Transportation Engineering, 2013, 13(1): 20-26. (in Chinese). doi: 10.3969/j.issn.1671-1637.2013.01.004
    [65]
    YIN Cun-xin. Computing method for effect analysis of temperature and shrinkage on steel-concrete composite beams[J]. China Journal of Highway and Transport, 2014, 27(11): 76-83. (in Chinese). doi: 10.3969/j.issn.1001-7372.2014.11.011
    [66]
    GIRHAMMAR U A, GOPU V K A. Composite beam-columns with interlayer slip—exact analysis[J]. Journal of Structural Engineering, 1993, 119(4): 1265-1282. doi: 10.1061/(ASCE)0733-9445(1993)119:4(1265)
    [67]
    LUCAS J M, BERRED A, LOUIS C. Thermal actions on a steel box girder bridge[J]. Structures and Buildings, 2003, 156(2): 175-182.
    [68]
    LUCAS J M, VIRLOGEUX M, LOUIS C. Temperature in the box girder of the Normandy Bridge[J]. Journal of the International Association for Bridge and Structural Engineering, 2005, 15(3): 156-165.
    [69]
    CHANG S P, IM C K. Thermal behaviour of composite box-girder bridges[J]. Structures and Buildings, 2000, 140(2): 117-126.
    [70]
    POTGIETER I C, GAMBLE W L. Nonlinear temperature distributions in bridges at different locations in the United States[J]. Journal of Precast/Prestressed Concrete Institute, 1989, 34(4): 80-103.
    [71]
    MIRAMBELL E, AGUADO A. Temperature and stress distributions in concrete box girder bridges[J]. Journal of Structural Engineering, 1990, 116(9): 2388-2409. doi: 10.1061/(ASCE)0733-9445(1990)116:9(2388)
    [72]
    JI De-jun, LIU Jiang, ZHANG Zhuan-fang, et al. Temperature effect analysis of steel-concrete composite girder cable-stayed bridge in arctic-alpine region[J]. Journal of Architecture and Civil Engineering, 2016, 33(1): 113-119. (in Chinese). doi: 10.3969/j.issn.1673-2049.2016.01.016
    [73]
    WANG Zhi-xiang. The temperature effect of the steel-concrete composite cable-stayed bridge during the construction phase in arctic-alpine region[D]. Xi'an: Chang'an University, 2017. (in Chinese).
    [74]
    LIU Guang-long, LIU Jiang, LIU Yong-jian, et al. Measurement and simulation of temperature field of concrete box girder in northwest severe cold area[J]. Journal of Highway and Transportation Research and Development, 2018, 35(3): 64-71. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201803009.htm
    [75]
    ZANG Hai-xiang, XU Qing-shan, BIAN Hai-hong. Generation of typical solar radiation data for different climates of China[J]. Energy, 2012, 38(1): 236-248. doi: 10.1016/j.energy.2011.12.008

Catalog

    Article Metrics

    Article views (1684) PDF downloads(431) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return