Citation: | HUANG Chuan, LYU Jing, AI Yun-fei. Optimization of VTS radar station location and configuration based on fine division of water area[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 192-205. doi: 10.19818/j.cnki.1671-1637.2020.03.018 |
[1] |
PRAETORIUS G, HOLLNAGEL E, DAHLAMN J. Modelling vessel traffic service to understand resilience in everyday operations[J]. Reliability Engineering and System Safety, 2015, 141: 10-21. doi: 10.1016/j.ress.2015.03.020
|
[2] |
JEON H S, LEE B G. Redundancy method for VTS system[C]//IEEE. 2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI 2016). New York: IEEE, 2016: 99-103.
|
[3] |
PRAETORIUS G, HOLLNAGEL E, DAHLMAN J. Modelling vessel traffic service to understand resilience in everyday operations[J]. Reliability Engineering and System Safety, 2015, 141: 10-21. doi: 10.1016/j.ress.2015.03.020
|
[4] |
UCHACZ W, GALOR W. Optimization model of radar stations location in vessel traffic system[C]//IEEE. 18th International Conference on Methods and Models in Automation and Robotics. New York: IEEE, 2013: 426-429.
|
[5] |
CAO De-sheng, LYU Jing, JIANG Xiao-lin. Coastal VTS classification based on hierarchical clustering analysis[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2014, 38(3): 576-584. (in Chinese). doi: 10.3963/j.issn.2095-3844.2014.03.023
|
[6] |
CAO De-sheng, LYU Jing, AI Yun-fei, et al. Optimization model of VTS radar station location problem[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(6): 727-731. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201406002.htm
|
[7] |
CAO De-sheng, LYU Jing, AI Yun-fei, et al. Optimization location model of VTS radar stations based on set covering theory[J]. Transactions of Beijing Institute of Technology, 2014, 34(7): 752-756. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201407019.htm
|
[8] |
AI Yun-fei, CAO De-sheng, SHEN Bing, et al. Bi-level optimization model of VTS center layout and radar station location-configuration[J]. Journal of Dalian Maritime University, 2017, 43(3): 107-111. (in Chinese). doi: 10.3969/j.issn.1671-7031.2017.03.020
|
[9] |
SUN Yao-hua, CHEN Chang-yuan, CHEN Xiao, et al. Optimization model of VTS radar station allocation configuration based on LINGO[J]. Ship and Ocean Engineering, 2017, 46(S2): 275-278. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-BJLG201407019.htm
|
[10] |
ZHENG Yuan-zhou, CHENG Xiao-dong, GAN Lang-xiong, et al. Shadowing effect of coastal building on VTS radar[J]. Navigation of China, 2018, 41(1): 1-6, 12. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201801001.htm
|
[11] |
ŁUBCZONEK J. Application of GIS techniques in VTS radar stations planning[C]//IEEE. International Radar Symposium. New York: IEEE, 2008: 1-4.
|
[12] |
CAO Shi-lian, JIN Yi-cheng, YIN Yong. On simulating marine radar echo intensity generated by 3D graphic rendering[J]. Journal of System Simulation, 2016, 28(9): 2076-2084. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201609023.htm
|
[13] |
CAO Shi-lian, JIN Yi-cheng, YIN Yong. Key technologies for generating marine radar image by scene rendering[J]. Journal of Harbin Engineering University, 2017, 38(5): 711-718, 790. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201705009.htm
|
[14] |
WIERSMA E, MASTENBROEK N. Measurement of vessel traffic service operator performance[J]. IFAC Proceedings Volumes, 1997, 30(24): 61-64. doi: 10.1016/S1474-6670(17)42223-3
|
[15] |
LEE G, KIM S Y, LEE M K. Economic evaluation of vessel traffic service (VTS): a contingent valuation study[J]. Marine Policy, 2015, 61: 149-154. doi: 10.1016/j.marpol.2015.08.011
|
[16] |
HU Wei-xuan, LIN Dan, DU Yan. Application research of comprehensive evaluation of VTS based on combination evaluation[J]. Science Research Management, 2016, 37(S): 533-546. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KYGL2016S1078.htm
|
[17] |
MOU Jun-min, ZHOU Cui, DU Yu, et al. Evaluate VTS benefits: a case study of Zhoushan Port[J]. International Journal of e-Navigation and Maritime Economy, 2015, 3: 22-31. doi: 10.1016/j.enavi.2015.12.003
|
[18] |
CHENG Yuan-e, ZHOU Shao-guang, YUAN Chun-qi, et al. Water boundary extraction method combining LiDAR and remote sensing image[J]. Geospatial Information, 2017, 15(2): 76-79. (in Chinese). doi: 10.3969/j.issn.1672-4623.2017.02.024
|
[19] |
ZHANG Wei, YANG Xin, TANG Guo-an, et al. DEM-based flow direction algorithms study of stream extraction and watershed delineation in the low relief areas[J]. Science of Surveying and Mapping, 2012, 37(2): 94-96. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201202033.htm
|
[20] |
MARTÍNEZ-LÓPEZ J, CARREÑO M F, PALAZÓN-FERRANDO J A, et al. Free advanced modeling and remote-sensing techniques for wetland watershed delineation and monitoring[J]. International Journal of Geographical Information Science, 2014, 28(8): 1610-1625. doi: 10.1080/13658816.2013.852677
|
[21] |
LIANG Jia-yong, LIU De-sheng. A local thresholding approach to flood water delineation using Sentinel-1 SAR imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 53-62. doi: 10.1016/j.isprsjprs.2019.10.017
|
[22] |
HU Da-wei, CHEN Xi-qiong, GAO Yang. Review on location-routing problem[J]. Journal of Traffic and Transportation Engineering, 2018, 18(1): 111-129. (in Chinese). doi: 10.3969/j.issn.1671-1637.2018.01.011
|
[23] |
ZHANG Qian, GAO Li-qun, HU Xiang-pei. Review on optimal algorithms of location-routing problem (LRP) in integrated logistics[J]. Journal of Northeastern University(Natural Science), 2003, 24(1): 31-34. (in Chinese). doi: 10.3321/j.issn:1005-3026.2003.01.009
|
[24] |
MI Yang. Bi-objective optimal locations of charging stations for electric vehicles[J]. Journal of Harbin Engineering University, 2018, 39(8): 1264-1268, 1342. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201808002.htm
|
[25] |
FINK M, DESAULNIERS G, FREY M, et al. Column generation for vehicle routing problems with multiple synchronization constraints[J]. European Journal of Operational Research, 2019, 272: 699-711. doi: 10.1016/j.ejor.2018.06.046
|
[26] |
LI Shu-qin, JIA Shuai. The seaport traffic scheduling problem: formulations and a column-row generation algorithm[J]. Transportation Research Part B: Methodological, 2019, 128: 158-184. doi: 10.1016/j.trb.2019.08.003
|
[27] |
MIRJALILI S. Moth-flame optimization algorithm: a novel nature-inspired heuristic paradigm[J]. Knowledge-Based Systems, 2015, 89: 228-249. doi: 10.1016/j.knosys.2015.07.006
|
[28] |
YUAN Qun, ZUO Yi. Selection of cold chain logistics distribution center location based on improved hybrid genetic algorithm[J]. Journal of Shanghai Jiaotong University, 2016, 50(11): 1795-1800. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201611023.htm
|
[29] |
WEI Mei-yi, LI Xiang, YU Le-an. Time-dependent fuzzy random location-scheduling programming for hazardous materials transportation[J]. Transportation Research Part C: Emerging Technologies, 2015, 57: 146-165. doi: 10.1016/j.trc.2015.06.012
|
[30] |
ZHENG Yu-jun, CHEN Sheng-yong. Cooperative particle swarm optimization for multiobjective transportation planning[J]. Applied Intelligence, 2013, 39(1): 202-216. doi: 10.1007/s10489-012-0405-5
|
[31] |
AMELI A, BAHRAMI S, KHAZAELI F, et al. A multiobjective particle swarm optimization for sizing and placement of DGs from DG owner's and distribution company's viewpoints[J]. IEEE Transactions on Power Delivery, 2014, 29(4): 1831-1840. doi: 10.1109/TPWRD.2014.2300845
|