ZHAO Shu-en, LENG Yao, SHAO Yi-ming. Explicit model predictive control of multi-objective adaptive cruise of vehicle[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 206-216. doi: 10.19818/j.cnki.1671-1637.2020.03.019
Citation: ZHAO Shu-en, LENG Yao, SHAO Yi-ming. Explicit model predictive control of multi-objective adaptive cruise of vehicle[J]. Journal of Traffic and Transportation Engineering, 2020, 20(3): 206-216. doi: 10.19818/j.cnki.1671-1637.2020.03.019

Explicit model predictive control of multi-objective adaptive cruise of vehicle

doi: 10.19818/j.cnki.1671-1637.2020.03.019
Funds:

National Key Research and Development Project of China 2016YFB0100905

Natural Science Foundation of Chongqing cstc2018jcyjAX0422

More Information
  • Author Bio:

    ZHAO Shu-en(1972-), male, professor, PhD, zse0916@163.com

  • Corresponding author: LENG Yao (1995-), male, graduate student, lengyao0025@163.com
  • Received Date: 2019-12-13
  • Publish Date: 2020-06-25
  • In order to coordinate both the tracking control effect and real-time performance of adaptive cruise control(ACC) system, a multi-objective adaptive cruise control method of vehicle was proposed via the explicit model predictive control(EMPC) theory. Based on the kinematic relationship between vehicles, an adaptive cruise control kinematics model was established. The tracking error prediction model was derived in the forecast time domain by the predictive control theory. The multi-performance objective functions and constraints of vehicle safety, tracking, economy and comfort were determined. The closed-loop model predictive control system based on the repeated online optimization calculation, was transformed into an equivalent explicit polyhedral piece-wise affine(PPWA) system by the multi-parameter programming theory of explicit model predictive control. The optimal control laws from the distance error, velocity error, self-vehicle acceleration and rear vehicle acceleration to the desired acceleration were obtained by the off-line calculation. The search process of the online control was designed. The adaptive cruise control was realized by the explicit control laws in the partition of the current state vector. The longitudinal tracking conditions were simulated and verified, and the EMPC-ACC was compared with the traditional MPC-ACC. Compared result shows that in the sinusoidal acceleration and deceleration condition of lead vehicle, the single-step operation speed of EMPC-ACC controller improves by 53.51% on average compared with the MPC-ACC controller. Under the EMPC-ACC, the average distance tracking error is 0.220 3 m, and the average speed error is 0.340 1 m·s-1. In the step acceleration and deceleration condition of lead vehicle, the single-step operation speed of EMPC-ACC controller improves by 72.96% on average compared with the MPC-ACC controller. The average distance tracking error is 0.331 9 m, and the average speed error is 0.399 1 m·s-1 under the EMPC-ACC. It can be seen that on the premise of guaranteeing the longitudinal tracking performance, the proposed EMPC-ACC controller can effectively improve the real-time performance of the ACC.

     

  • loading
  • [1]
    秦严严, 王昊, 王炜, 等. 自适应巡航控制车辆跟驰模型综述[J]. 交通运输工程学报, 2017, 17(3): 121-130. doi: 10.3969/j.issn.1671-1637.2017.03.013

    QIN Yan-yan, WANG Hao, WANG Wei, et al. Review of car-following models of adaptive cruise control[J]. Journal of Traffic and Transportation Engineering, 2017, 17(3): 121-130. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.03.013
    [2]
    吴兵, 王文璇, 李林波, 等. 多前车影响的智能网联车辆纵向控制模型[J]. 交通运输工程学报, 2020, 20(2): 184-194. doi: 10.19818/j.cnki.1671-1637.2020.02.015

    WU Bing, WANG Wen-xuan, LI Lin-bo, et al. Longitudinal control model for connected autonomous vehicles influenced multiple preceding vehicles[J]. Journal of Traffic and Transportation Engineering, 2020, 20(2): 184-194. (in Chinese). doi: 10.19818/j.cnki.1671-1637.2020.02.015
    [3]
    吴光强, 张亮修, 刘兆勇, 等. 汽车自适应巡航控制系统研究现状与发展趋势[J]. 同济大学学报(自然科学版), 2017, 45(4): 544-553. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201704013.htm

    WU Guang-qiang, ZHANG Liang-xiu, LIU Zhao-yong, et al. Research status and development trend of vehicle adaptive cruise control systems[J]. Journal of Tongji University(Natural Science), 2017, 45(4): 544-553. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201704013.htm
    [4]
    刘道旭东. 基于神经网络PID控制器的汽车自适应巡航控制系统研究[D]. 长春: 吉林大学, 2017.

    LIU Dao-xu-dong. The adaptive cruise control system research based on neural network-PID controller[D]. Changchun: Jilin University, 2017. (in Chinese).
    [5]
    ZHANG Jian-long, IOANNOU P A. Longitudinal control of heavy trucks in mixed traffic: environmental and fuel economy considerations[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(1): 92-104. doi: 10.1109/TITS.2006.869597
    [6]
    ABDULLAH R, HUSSAIN A, WARWICK K, et al. Autonomous intelligent cruise control using a novel multiple-controller framework incorporating fuzzy-logic-based switching and tuning[J]. Neurocomputing, 2008, 71(13): 2727-2741.
    [7]
    张亮修, 吴光强, 郭晓晓. 车辆自适应巡航控制系统的建模与分层控制[J]. 汽车工程, 2018, 40(5): 547-553. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201805008.htm

    ZHANG Liang-xiu, WU Guang-qiang, GUO Xiao-xiao. Modeling and hierarchical control of vehicle ACC system[J]. Automotive Engineering, 2018, 40(5): 547-553. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201805008.htm
    [8]
    李朋, 魏民祥, 侯晓利. 自适应巡航控制系统的建模与联合仿真[J]. 汽车工程, 2012, 34(7): 622-626. doi: 10.3969/j.issn.1000-680X.2012.07.013

    LI Peng, WEI Min-xiang, HOU Xiao-li. Modeling and co-simulation of adaptive cruise control system[J]. Automotive Engineering, 2012, 34(7): 622-626. (in Chinese). doi: 10.3969/j.issn.1000-680X.2012.07.013
    [9]
    GANJI B, KOUZANI A Z, KHOO S T, et al. Adaptive cruise control of a HEV using sliding mode control[J]. Expert Systems with Applications, 2014, 41(2): 607-615. doi: 10.1016/j.eswa.2013.07.085
    [10]
    LI S E, DENG Kun, LI Ke-qiang, et al. Terminal sliding mode control of automated car-following system without reliance on longitudinal acceleration information[J]. Mechatronics, 2015, 30: 327-337. doi: 10.1016/j.mechatronics.2014.09.014
    [11]
    TSAI C C, HSIEH S M, CHEN C T. Fuzzy longitudinal controller design and experimentation for adaptive cruise control and stop & amp; amp; go[J]. Journal of Intelligent and Robotic Systems, 2010, 59(2): 167-189. doi: 10.1007/s10846-010-9393-z
    [12]
    LI Sheng-bo, LI Ke-qiang, RAJAMANI R, et al. Model predictive multi-objective vehicular adaptive cruise control[J]. IEEE Transactions on Control Systems Technology, 2011, 19(3): 556-566. doi: 10.1109/TCST.2010.2049203
    [13]
    LUO Li-hua, LIU Hong, LI Ping, et al. Model predictive control for adaptive cruise control with multi-objectives: comfort, fuel-economy, safety and car-following[J]. Journal of Zhejiang University—Science A: Applied Physics and Engineering, 2010, 11(3): 191-201.
    [14]
    DING Yong-qiang, CHEN Hui-yan, GONG Jian-wei, et al. Model predictive enhanced adaptive cruise control for multiple driving situations[C]∥IEEE. 2018 Intelligent Vehicle Symposium (IV). New York: IEEE, 2018: 1717-1722.
    [15]
    MOSER D, SCHMIED R, WASCHL H, et al. Flexible spacing adaptive cruise control using stochastic model predictive control[J]. IEEE Transactions on Control Systems Technology, 2018, 26(1): 114-127. doi: 10.1109/TCST.2017.2658193
    [16]
    章军辉, 李庆, 陈大鹏. 车辆多模式多目标自适应巡航控制[J]. 电子科技大学学报, 2018, 47(3): 368-374. doi: 10.3969/j.issn.1001-0548.2018.03.008

    ZHANG Jun-hui, LI Qing, CHEN Da-peng. Multi-objective adaptive cruise control with multi-mode strategy[J]. Journal of University of Electronic Science and Technology of China, 2018, 47(3): 368-374. (in Chinese). doi: 10.3969/j.issn.1001-0548.2018.03.008
    [17]
    章军辉, 李庆, 陈大鹏. 仿驾驶员多目标决策自适应巡航鲁棒控制[J]. 控制理论与应用, 2018, 35(5): 769-777. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201806006.htm

    ZHANG Jun-hui, LI Qing, CHEN Da-peng. Drivers imitated multi-objective adaptive cruise control algorithm[J]. Control Theory and Applications, 2018, 35(5): 769-777. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201806006.htm
    [18]
    解来卿, 罗禹贡, 李升波. 分布式电驱动车辆的ACC协同控制[J]. 汽车工程, 2018, 40(6): 652-658. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201806005.htm

    XIE Lai-qing, LUO Yu-gong, LI Sheng-bo, et al. Coordinated control for adaptive cruise control system of distributed drive electric vehicles[J]. Automotive Engineering, 2018, 40(6): 652-658. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC201806005.htm
    [19]
    FALCONE P, BORRELLI F, TSENG H E, et al. Linear time-varying model predictive control and its application to active steering systems: stability analysis and experimental validation[J]. International Journal of Robust and Nonlinear Control, 2011, 18(8): 862-875.
    [20]
    MAYNE D Q. Model predictive control: recent developments and future promise[J]. Automatica, 2014, 50(12): 2967-2986.
    [21]
    席裕庚, 李德伟, 林姝. 模型预测控制——现状与挑战[J]. 自动化学报, 2013, 39(3): 222-231. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201303005.htm

    XI Yu-geng, LI De-wei, LIN Shu. Model predictive control—status and challenges[J]. Acta Automatic Sinica, 2013, 39(3): 222-231. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201303005.htm
    [22]
    李德伟. 预测控制在线优化策略的研究[D]. 上海: 上海交通大学, 2009.

    LI De-wei. The research on online optimization strategy in model predictive control[D]. Shanghai: Shanghai Jiaotong University, 2009. (in Chinese).
    [23]
    DOMAHIDI A, ZGRAGGEN A U, ZEILINGER M N, et al. Efficient interior point methods for multistage problems arising in receding horizon control[C]//IEEE. 51st IEEE Conference on Decision and Control. New York: IEEE, 2012: 668-674.
    [24]
    邱利宏, 钱立军, 杜志远, 等. 车联网环境下车辆最优车速闭环快速模型预测控制[J]. 中国机械工程, 2017, 28(10): 1245-1252. doi: 10.3969/j.issn.1004-132X.2017.10.018

    QIU Li-hong, QIAN Li-jun, DU Zhi-yuan, et al. A closed-loop FMPC of optimal velocities for connected vehicles[J]. China Mechanical Engineering, 2017, 28(10): 1245-1252. (in Chinese). doi: 10.3969/j.issn.1004-132X.2017.10.018
    [25]
    RUBAGOTTI M, BARCELLI D, BEMPORAD A, et al. Robust explicit model predictive control via regular piecewise-affine approximation[J]. International Journal of Control, 2014, 87(12): 2583-2593. doi: 10.1080/00207179.2014.935958
    [26]
    BEMPORAD A. A multiparametric quadratic programming algorithm with polyhedral computations based on nonnegative least squares[J]. IEEE Transactions on Automatic Control, 2015, 60(11): 2892-2903. doi: 10.1109/TAC.2015.2417851
    [27]
    朱敏, 陈慧岩. 考虑车间反应时距的汽车自适应巡航控制策略[J]. 机械工程学报, 2017, 53(24): 144-150. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201724018.htm

    ZHU Min, CHEN Hui-yan. Strategy for vehicle adaptive cruise control considering the reaction headway[J]. Journal of Mechanical Engineering, 2017, 53(24): 144-150. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201724018.htm
    [28]
    程鑫滟. 三自由度直升机系统的显式模型预测控制实验研究[D]. 杭州: 浙江工业大学, 2015.

    CHENG Xin-yan. Control of a laboratory 3-DOF helicopter: explicit model predictive approach[D]. Hangzhou: Zhejiang University of Technology, 2015. (in Chinese).
    [29]
    修晓杰. 显式模型预测控制中点定位算法研究[D]. 杭州: 浙江工业大学, 2019.

    XIU Xiao-jie. Research on point location algorithm in explicit model predictive control[D]. Hangzhou: Zhejiang University of Technology, 2019. (in Chinese).
    [30]
    赵恺伦. 近似显式模型预测控制及其在三自由度直升机上的应用[D]. 杭州: 浙江工业大学, 2019.

    ZHAO Kai-lun. Approximate explicit model predictive control and applications on the 3-DOF helicopter[D]. Hangzhou: Zhejiang University of Technology, 2019. (in Chinese).
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1390) PDF downloads(683) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return