Citation: | JIANG Lei, LIU Yong-jian, LONG Xin, WANG Wen-shuai, MA Yin-ping. Fatigue assessment of joints in concrete-filled rectangular hollow section composite truss bridges based on hot spot stress method[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 104-116. doi: 10.19818/j.cnki.1671-1637.2020.06.009 |
[1] |
刘彬, 刘永健, 周绪红, 等. 中等跨径装配式矩形钢管混凝土组合桁梁桥设计[J]. 交通运输工程学报, 2017, 17(4): 20-31. doi: 10.3969/j.issn.1671-1637.2017.04.003
LIU Bin, LIU Yong-jian, ZHOU Xu-hong, et al. Design of mid-span fabricated RCFST composite truss bridge[J]. Journal of Traffic and Transportation Engineering, 2017, 17(4): 20-31. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.04.003
|
[2] |
刘永健, 马印平, 田智娟, 等. 矩形钢管混凝土组合桁梁连续刚构桥实桥试验[J]. 中国公路学报, 2018, 31(5): 53-62. doi: 10.3969/j.issn.1001-7372.2018.05.007
LIU Yong-jian, MA Yin-ping, TIAN Zhi-juan, et al. Field test of rectangular concrete filled steel tubular composite truss bridge with continuous rigid system[J]. China Journal of Highway and Transport, 2018, 31(5): 53-62. (in Chinese). doi: 10.3969/j.issn.1001-7372.2018.05.007
|
[3] |
高诣民, 刘永健, 周绪红, 等. 高性能钢管混凝土组合桁梁桥[J]. 中国公路学报, 2018, 31(12): 174-187. doi: 10.3969/j.issn.1001-7372.2018.12.017
GAO Yi-min, LIU Yong-jian, ZHOU Xu-hong, et al. High-performance CFST composite truss bridge[J]. China Journal of Highway and Transport, 2018, 31(12): 174-187. (in Chinese). doi: 10.3969/j.issn.1001-7372.2018.12.017
|
[4] |
TIAN Zhi-juan, LIU Yong-jian, JIANG Lei, et al. A review on application of composite truss bridges composed of hollow structural section members[J]. Journal of Traffic and Transportation Engineering (English Edition), 2019, 6(1): 94-108. doi: 10.1016/j.jtte.2018.12.001
|
[5] |
周绪红, 刘永健, 姜磊, 等. PBL加劲型矩形钢管混凝土力学性能研究综述[J]. 中国公路学报, 2017, 30(11): 45-62. doi: 10.3969/j.issn.1001-7372.2017.11.006
ZHOU Xu-hong, LIU Yong-jian, JIANG Lei, et al. Review on mechanical behavior research of concrete filled rectangular hollow section tube stiffened with PBL[J]. China Journal of Highway and Transport, 2017, 30(11): 45-62. (in Chinese). doi: 10.3969/j.issn.1001-7372.2017.11.006
|
[6] |
周建庭, 郑丹. 保障我国桥梁安全的战略思考[J]. 中国工程科学, 2017, 19(6): 27-37. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201706006.htm
ZHOU Jian-ting, ZHENG Dan. Safety of highway bridges in China[J]. Strategic Study of CAE, 2017, 19(6): 27-37. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201706006.htm
|
[7] |
姜磊, 刘永健, 王康宁. 焊接管节点结构形式发展及疲劳性能对比[J]. 建筑结构学报, 2019, 40(3): 180-191. https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201903019.htm
JIANG Lei, LIU Yong-jian, WANG Kang-ning. Development of welded tubular joints and comparison of fatigue behaviour[J]. Journal of Building Structures, 2019, 40(3): 180-191. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB201903019.htm
|
[8] |
刘永健, 姜磊, 王康宁. 焊接管节点疲劳研究综述[J]. 建筑科学与工程学报, 2017, 34(5): 1-20. doi: 10.3969/j.issn.1673-2049.2017.05.002
LIU Yong-jian, JIANG Lei, WANG Kang-ning. Review of fatigue behavior in welded tubular joints[J]. Journal of Architecture and Civil Engineering, 2017, 34(5): 1-20. (in Chinese). doi: 10.3969/j.issn.1673-2049.2017.05.002
|
[9] |
LIU Jiang, LIU Yong-jian, ZHANG Chen-yu, et al. Temperature action and effect of concrete-filled steel tubular bridges: a review[J]. Journal of Traffic and Transportation Engineering (English Edition), 2020, 7(2): 174-191. doi: 10.1016/j.jtte.2020.03.001
|
[10] |
WEI Xing, WEN Zong-yi, XIAO Lin, et al. Review of fatigue assessment approaches for tubular joints in CFST trusses[J]. International Journal of Fatigue, 2018, 113: 43-53. doi: 10.1016/j.ijfatigue.2018.04.007
|
[11] |
VAN WINGERDE A M, PACKER J A, WARDENIER J. Criteria for the fatigue assessment of hollow structural section connections[J]. Journal of Constructional Steel Research, 1995, 35(1): 71-115. doi: 10.1016/0143-974X(94)00030-I
|
[12] |
DEHGHANI A, ASLANI F. Fatigue performance and design of concrete-filled steel tubular joints: a critical review[J]. Journal of Constructional Steel Research, 2019, 162: 105749-1-17.
|
[13] |
LAN X Y, CHAN T M. Recent research advances of high strength steel welded hollow section joints[J]. Structures, 2019, 17: 58-65. doi: 10.1016/j.istruc.2018.11.015
|
[14] |
ZHAO X L, TONG L W. New development in steel tubular joints[J]. Advances in Structural Engineering, 2011, 14(4): 699-715. doi: 10.1260/1369-4332.14.4.699
|
[15] |
姜磊. 矩形钢管混凝土梁桥节点疲劳性能和计算方法研究[D]. 西安: 长安大学, 2019.
JIANG Lei. Research on fatigue behaviour and calculation method of joints in concrete-filled rectangular hollow section truss bridge[D]. Xi'an: Chang'an University, 2019. (in Chinese).
|
[16] |
JIANG Lei, LIU Yong-jian, FAM A. Stress concentration factors in joints of square hollow section (SHS) brace and concrete-filled SHS chord under axial tension in brace[J]. Thin-Walled Structures, 2018, 132: 79-92. doi: 10.1016/j.tws.2018.08.014
|
[17] |
JIANG Lei, LIU Yong-jian, FAM A. Stress concentration factors in concrete-filled square hollow section joints with perfobond ribs[J]. Engineering Structures, 2019, 181: 165-180. doi: 10.1016/j.engstruct.2018.12.016
|
[18] |
JIANG Lei, LIU Yong-jian, FAM A, et al. Fatigue behaviour of non-integral Y-joint of concrete-filled rectangular hollow section continuous chord stiffened with perfobond ribs[J]. Engineering Structures, 2019, 191: 611-624. doi: 10.1016/j.engstruct.2019.04.089
|
[19] |
JIANG Lei, LIU Yong-jian, FAM A, et al. Stress concentration factor parametric formulae for concrete-filled rectangular hollow section K-joints with perfobond ribs[J]. Journal of Constructional Steel Research, 2019, 160: 579-597. doi: 10.1016/j.jcsr.2019.06.005
|
[20] |
JIANG Lei, LIU Yong-jian, FAM A, et al. Fatigue behavior of integral built-up box Y-joints between concrete-filled chords with perfobond ribs and hollow braces[J]. Journal of Structural Engineering, 2020, 146(3): 04019218-1-15.
|
[21] |
刘永健, 姜磊, 熊治华, 等. PBL加劲型矩形钢管混凝土受拉节点热点应力集中系数计算方法[J]. 交通运输工程学报, 2017, 17(5): 1-15. doi: 10.3969/j.issn.1671-1637.2017.05.001
LIU Yong-jian, JIANG Lei, XIONG Zhi-hua, et al. Hot spot SCF computation method of concrete-filled and PBL-stiffened rectangular hollow section joint subjected to axial tensions[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 1-15. (in Chinese). doi: 10.3969/j.issn.1671-1637.2017.05.001
|
[22] |
MASHIRI F R, ZHAO Xiao-ling. Square hollow section (SHS) T-joints with concrete-filled chords subjected to in-plane fatigue loading in the brace[J]. Thin-Walled Structures, 2010, 48(2): 150-158. doi: 10.1016/j.tws.2009.07.010
|
[23] |
MASHIRI F R, ZHAO Xiao-ling, GRUNDY P. Fatigue tests and design of welded T connections in thin cold-formed square hollow sections under in-plane bending[J]. Journal of Structural Engineering, 2002, 128: 1413-1422. doi: 10.1061/(ASCE)0733-9445(2002)128:11(1413)
|
[24] |
MATTI F N, MASHIRI F R. Design formulae for predicting the stress concentration factors of concrete-filled T-joints under out-of-plane bending[J]. Structures, 2020, 28: 2073-2095. doi: 10.1016/j.istruc.2020.10.032
|
[25] |
MATTI F N, MASHIRI F R. Experimental and numerical studies on SCFs of SHS T-joints subjected to static out-of-plane bending[J]. Thin-Walled Structures, 2020, 146: 106453-1-18.
|
[26] |
CHIEW S P, ZHAO M S, LEE C K. Fatigue performance of high strength steel built-up box T-joints[J]. Journal of Constructional Steel Research, 2015, 106: 296-310. doi: 10.1016/j.jcsr.2014.12.018
|
[27] |
JIANG J, LEE C K, CHIEW S P. Residual stress and stress concentration effect of high strength steel built-up box T-joints[J]. Journal of Constructional Steel Research, 2015, 105: 164-173. doi: 10.1016/j.jcsr.2014.11.008
|
[28] |
MASHAYEKHI M, SANTINI-BELL E. Fatigue assessment of a complex welded steel bridge connection utilizing a three-dimensional multi-scale finite element model and hotspot stress method[J]. Engineering Structures, 2020, 214: 110624-1-12.
|
[29] |
LIU Z, CORREIA J, CARVALHO H, et al. Global-local fatigue assessment of an ancient riveted metallic bridge based on submodelling of the critical detail[J]. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42: 546-560. doi: 10.1111/ffe.12930
|
[30] |
COSTA BORGES L A. Size effects in the fatigue behaviour of tubular bridge joints[D]. Coimbra: University of Coimbra, 2008.
|
[31] |
VAN WINGERDE A M. The fatigue behaviour of T- and X-joint made of square hollow sections[J]. Heron, 1992, 37(2): 1-182.
|
[32] |
WANG Ke, TONG Le-wei, ZHU Jun, et al. Fatigue behavior of welded T-joints with a CHS brace and CFCHS chord under axial loading in the brace[J]. Journal of Bridge Engineering, 2013, 18(2): 142-152. doi: 10.1061/(ASCE)BE.1943-5592.0000331
|
[33] |
TONG L W, XU G W, YANG D L, et al. Fatigue behavior and design of welded tubular T-joints with CHS brace and concrete-filled chord[J]. Thin-Walled Structures, 2017, 120: 180-190. doi: 10.1016/j.tws.2017.08.024
|
[34] |
马印平, 刘永健, 刘江. 基于响应面法的钢管混凝土组合桁梁桥多尺度有限元模型修正[J]. 中国公路学报, 2019, 32(11): 51-61. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201911005.htm
MA Yin-ping, LIU Yong-jian, LIU Jiang. Multi-scale finite element model updating of CFST composite truss bridge based on response surface method[J]. China Journal of Highway and Transport, 2019, 32(11): 51-61. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201911005.htm
|
[35] |
刘永健, 龙辛, 姜磊, 等. 基于热点应力法的钢管混凝土焊接节点疲劳构造细节比较[J]. 建筑科学与工程学报, 2020, 37(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG202005002.htm
LIU Yong-jian, LONG Xin, JIANG Lei, et al. Comparison on fatigue structural details of CFST welded joints based on hot spot stress method[J]. Journal of Architecture and Civil Engineering, 2020, 37(5): 1-12. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-XBJG202005002.htm
|