Citation: | YANG Bing, LIAO Zhen, WU Sheng-chuan, XIAO Shou-ne, YANG Guang-wu, ZHU Tao, WANG Ming-meng, DENG Yong-quan. Development of additive manufacturing technology and its application prospect in advanced rail transit equipment[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 132-153. doi: 10.19818/j.cnki.1671-1637.2021.01.006 |
[1] |
MOHSEN A. The rise of 3-D printing: the advantages of additive manufacturing over traditional manufacturing[J]. Business Horizons, 2017, 60(5): 677-688. doi: 10.1016/j.bushor.2017.05.011
|
[2] |
郑燕. 3D打印硬组织用光固化复合树脂的制备及其低聚物的合成[D]. 青岛: 青岛科技大学, 2019.
ZHENG Yan. Preparation of 3D printed hard tissue photocurable composite resin and the synthesis of oligomers[D]. Qingdao: Qingdao University of Science and Technology, 2019. (in Chinese)
|
[3] |
王华明. 高性能大型金属构件激光增材制造: 若干材料基础问题[J]. 航空学报, 2014, 35(10): 2690-2698. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201410002.htm
WANG Hua-ming. Materials' fundamental issues of laser additive manufacturing for high-performance large metallic components[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10): 2690-2698. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201410002.htm
|
[4] |
郜庆伟, 赵健, 舒凤远, 等. 铝合金增材制造技术研究进展[J]. 材料工程, 2019, 47(11): 32-42. doi: 10.11868/j.issn.1001-4381.2019.000084
GAO Qing-wei, ZHAO Jian, SHU Feng-yuan, et al. Research progress in aluminum alloy additive manufacturing[J]. Journal of Materials Engineering, 2019, 47(11): 32-42. (in Chinese) doi: 10.11868/j.issn.1001-4381.2019.000084
|
[5] |
ANNAMARIA G, MICHELE K, FILOMENO M, et al. Metal additive manufacturing in the commercial aviation industry: a review[J]. Journal of Manufacturing System, 2019, 53: 124-149. doi: 10.1016/j.jmsy.2019.08.005
|
[6] |
工业和信息化部, 国家发展和改革委员会, 教育部, 等. 增材制造产业发展行动计划(2017~2020年)[J]. 铸造设备与工艺, 2018(2): 59-63. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201823019.htm
Ministry of Industry and Information Technology, National Development and Reform Commission, Ministry of Education, et al. Additive manufacturing industry development action plan (2017-2020)[J]. Foundry Equipment and Technology, 2018(2): 59-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX201823019.htm
|
[7] |
康兴东, 龚晓波, 赵建. 城市轨道交通车辆轻量化车体结构材料的研究与应用[J]. 城市轨道交通研究, 2020, 23(6): 177-180. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202006047.htm
KANG Xing-dong, GONG Xiao-bo, ZHAO Jian. Research and application of lightweight carbody structural material for urban rail transit vehicle[J]. Urban Mass Transit, 2020, 23(6): 177-180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT202006047.htm
|
[8] |
何凤英. 浅谈3D打印技术[J]. 矿业工程, 2016, 14(3): 66-69. doi: 10.3969/j.issn.1671-8550.2016.03.024
HE Feng-ying. Brief discussion on 3D print technology[J]. Mining Engineering, 2016, 14(3): 66-69. (in Chinese) doi: 10.3969/j.issn.1671-8550.2016.03.024
|
[9] |
宋哲. 选区激光熔化钛合金的缺陷容限评价方法[D]. 成都: 西南交通大学, 2019.
SONG Zhe. The defect tolerance evaluation method for selective laser melted titanium alloys[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese)
|
[10] |
张文奇. AlSi10Mg合金粉末的选区激光熔化成形工艺及性能研究[D]. 武汉: 华中科技大学, 2018.
ZHANG Wen-qi. Investigation on process and performance of AlSi10Mg parts fabricated by selective laser melting[D]. Wuhan: Huazhong University of Science and Technology, 2018. (in Chinese)
|
[11] |
UZAN N E, SHNECK R, YEHESKEL O, et al. Fatigue of AlSi10Mg specimens fabricated by additive manufacturing selective laser melting (AM-SLM)[J]. Materials Science and Engineering: A, 2017, 704: 229-237. doi: 10.1016/j.msea.2017.08.027
|
[12] |
MARTINA F, COLEGROVE P A, WILLIAMS S W, et al. Microstructure of interpass rolled wire+arc additive manufacturing Ti-6Al-4V components[J]. Metallurgical and Materials Transactions A, 2015, 46(12): 6103-6118. doi: 10.1007/s11661-015-3172-1
|
[13] |
余开斌. 激光选区熔化成形AlSi10Mg合金的显微组织与力学性能研究[D]. 广州: 华南理工大学, 2018.
YU Kai-bin. Study on microstructures and mechanical properties of AlSi10Mg alloy produced by selective laser melting[D]. Guangzhou: South China University of Technology, 2018. (in Chinese)
|
[14] |
王小军. Al-Si合金的选择性激光熔化工艺参数与性能研究[D]. 北京: 中国地质大学, 2014.
WANG Xiao-jun. Process parameters and properties of selective laser melting Al-Si alloys[D]. Beijing: China University of Geosciences. (in Chinese)
|
[15] |
MURRL E, GAYTAN S M, CEYLAN A, et al. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting[J]. Acta Materialia, 2010, 58(5): 1887-1894. doi: 10.1016/j.actamat.2009.11.032
|
[16] |
郭超, 张平平, 林峰. 电子束选区熔化增材制造技术研究进展[J]. 工业技术创新, 2017, 4(4): 6-14. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJS201704002.htm
GUO Chao, ZHANG Ping-ping, LIN Feng. Research advances of electron beam selective melting additive manufacturing technology[J]. Industrial Technology Innovation, 2017, 4(4): 6-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYJS201704002.htm
|
[17] |
WANG Jun, PAN Zeng-xi, MA Yan, et al. Characterization of wire arc additively manufactured titanium aluminide functionally grade material: microstructure, mechanical properties and oxidation behaviour[J]. Materials and Science Engineering: A, 2018, 734: 110-119. doi: 10.1016/j.msea.2018.07.097
|
[18] |
WILLIAMS S W, MARTINA F, ADDISON A C, et al. Wire+arc additive manufacturing[J]. Materials Science and Technology, 2016, 32(7): 641-647. doi: 10.1179/1743284715Y.0000000073
|
[19] |
梁朝阳, 张安峰, 梁少端, 等. 高性能钛合金激光增材制造技术的研究进展[J]. 应用激光, 2017, 37(3): 452-458. https://www.cnki.com.cn/Article/CJFDTOTAL-YYJG201703026.htm
LIANG Zhao-yang, ZHANG An-feng, LIANG Shao-duan, et al. Research developments of high-performance titanium alloy by laser additive manufacturing technology[J]. Applied Laser, 2017, 37(3): 452-458. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYJG201703026.htm
|
[20] |
唐洪奎, 卓君, 马宽, 等. 航空航天钛合金结构件增材制造技术[J]. 金属加工: 热加工, 2020(8): 14-17. doi: 10.3969/j.issn.1674-165X.2020.08.004
TANG Hong-kui, ZHUO Jun, MA Kuan, et al. Additive manufacturing technology for titanium alloy structural parts in aerospace[J]. Metal Working, 2020(8): 14-17. (in Chinese) doi: 10.3969/j.issn.1674-165X.2020.08.004
|
[21] |
MARTINA F, DING J, WILLIAMS S, et al. Tandem metal inert gas process for high productivity wire arc additive manufacturing in stainless steel[J]. Additive Manufacturing, 2019, 25: 545-550. doi: 10.1016/j.addma.2018.11.022
|
[22] |
CHAE H B, KIM C H, KIM J H, et al. The effect of shielding gas composition in CO2 laser-gas metal arc hybrid welding[J]. Journal of Engineering Manufacture, 2008, 222(11): 1315-1324. doi: 10.1243/09544054JEM944
|
[23] |
STEFFEN N, SIEGFRIED S, ECKHARD B, et al. Laser beam build-up welding: precision in repair, surface cladding, and direct 3D metal deposition[J]. Journal of Thermal Spray Technology, 2007, 16(3): 344-348. doi: 10.1007/s11666-007-9028-5
|
[24] |
VAYSSETTE B, SAINTIER N, BRUGGER C, et al. Surface roughness effect of SLM and EBM Ti-6Al-4V on multiaxial high cycle fatigue[J]. Theoretical and Applied Fracture Mechanics, 2020, 108: 102581-1-31. doi: 10.1016/j.tafmec.2020.102581
|
[25] |
LÖBER L, SCHIMANSKY F P, KVHN U, et al. Selective laser melting of a beta-solidifying TNM-B1 titanium aluminide alloy[J]. Journal of Materials Processing Technology, 2014, 214(9): 1852-1860. doi: 10.1016/j.jmatprotec.2014.04.002
|
[26] |
董鹏, 李忠华, 严振宇, 等. 铝合金激光选区熔化成形技术研究现状[J]. 应用激光, 2015, 35(5): 607-611. https://www.cnki.com.cn/Article/CJFDTOTAL-YYJG201505018.htm
DONG Peng, LI Zhong-hua, YAN Zhen-yu, et al. Research status of selective laser melting of aluminum alloys[J]. Applied Laser, 2015, 35(5): 607-611. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YYJG201505018.htm
|
[27] |
VISCUSI A, LEITÃO C, RODRIGUES D M, et al. Laser beam welded joints of dissimilar heat treatable aluminium alloys[J]. Journal of Materials Processing Technology, 2016, 236: 48-55. doi: 10.1016/j.jmatprotec.2016.05.006
|
[28] |
LI Neng, HUANG Shuai, ZHANG Guo-dong, et al. Progress in additive manufacturing on new materials: a review[J]. Journal of Materials Science and Technology, 2019, 35(2): 242-269. doi: 10.1016/j.jmst.2018.09.002
|
[29] |
陈伟, 陈玉华, 毛育青. 铝合金增材制造技术研究进展[J]. 精密成形工程, 2017, 9(5): 214-219. doi: 10.3969/j.issn.1674-6457.2017.05.034
CHEN Wei, CHEN Yu-hua, MAO Yu-qing. Research progress in additive manufacturing technology of aluminum alloy[J]. Journal of Netshape Forming Engineering, 2017, 9(5): 214-219. (in Chinese) doi: 10.3969/j.issn.1674-6457.2017.05.034
|
[30] |
苗秋玉, 刘妙然, 赵凯, 等. 铝合金增材制造技术研究进展[J]. 激光与光电子学进展, 2018, 55(1): 58-66. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201801006.htm
MIAO Qiu-yu, LIU Miao-ran, ZHAO Kai, et al. Research progress on technologies of additive manufacturing of aluminum alloys[J]. Laser and Optoelectronics Progress, 2018, 55(1): 58-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201801006.htm
|
[31] |
MARINA C, SERGIO L, TOMMASO P, et al. Evaluation of corrosion resistance of Al-10Si-Mg alloy obtained by means of direct metal laser sintering[J]. Journal of Materials Processing Technology, 2016, 231: 326-335. doi: 10.1016/j.jmatprotec.2015.12.033
|
[32] |
朱小刚, 孙靖, 王联凤, 等. 激光选区熔化成形铝合金的组织、性能与倾斜面成形质量[J]. 机械工程材料, 2017, 41(2): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201702016.htm
ZHU Xiao-gang, SUN Jing, WANG Lian-feng, et al. Microstructure, properties and inclined plane forming quality of aluminum alloy by selective laser melting[J]. Materials for Mechanical Engineering, 2017, 41(2): 77-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC201702016.htm
|
[33] |
LEARY M, MAZUR M, ELAMBASSERIL J, et al. Selective laser melting (SLM) of AlSi12Mg lattice structures[J]. Materials and Design, 2016, 98: 344-357. doi: 10.1016/j.matdes.2016.02.127
|
[34] |
SISTIAGA M L M, MERTENS R, VRANCKEN B, et al. Changing the alloy composition of Al7075 for better process ability by selective laser melting[J]. Journal of Materials Processing Technology, 2016, 238: 437-445. doi: 10.1016/j.jmatprotec.2016.08.003
|
[35] |
LOH L E, LIU Z H, ZHANG D Q, et al. Selective laser melting of aluminium alloy using a uniform beam profile[J]. Virtual and Physical Prototyping, 2014, 9(1): 11-16. doi: 10.1080/17452759.2013.869608
|
[36] |
JAFARLOU D M, FERGUSON G, TSAKNOPOULOS, et al. Structural integrity of additively manufactured stainless steel with cold sprayed barrier coating under combined cyclic loading[J]. Additively Manufacturing, 2020, 35: 101338. doi: 10.1016/j.addma.2020.101338
|
[37] |
WITKIN D B, PATEL D, ALBRIGHT T V, et al. Influence of surface conditions and specimen orientation on high cycle fatigue properties of Inconel 718 prepared by laser powder bed fusion[J]. International Journal of Fatigue, 2020, 132: 105392. doi: 10.1016/j.ijfatigue.2019.105392
|
[38] |
LI Neng, HUANG Shuai, ZHANG Guo-dong, et al. Processing in additive manufacturing on the new materials: a review[J]. Journal of Materials Science and Technology, 2019, 35: 242-269. doi: 10.1016/j.jmst.2018.09.002
|
[39] |
YEH J W, CHEN S K, LIN S J, et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. doi: 10.1002/adem.200300567
|
[40] |
OTTO F, DLOUH AY'G A, SOMSEN C, et al. The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy[J]. Acta Materialia, 2013, 61(15): 5743-5755. doi: 10.1016/j.actamat.2013.06.018
|
[41] |
FUJIEDA T, SHIRATORI H, KUWABARA K, et al. First demonstration of promising selective electron beam melting method for utilizing high-entropy alloys as engineering materials[J]. Materials Letters, 2015, 159: 12-15. doi: 10.1016/j.matlet.2015.06.046
|
[42] |
FUJIEDA T, SHIRATORI H, KUWABARA K, et al. CoCrFeNiTi-based high-entropy alloy with superior tensile strength and corrosion resistance achieved by a combination of additive manufacturing using selective electron beam melting and solution treatment[J]. Materials Letters, 2017, 189: 148-151. doi: 10.1016/j.matlet.2016.11.026
|
[43] |
SZOST B A, TERZI S, MARTINA F, et al. A comparative study of additive manufacturing techniques: residual stress and microstructural analysis of CLAD and WAAM printed Ti-6Al-4V components[J]. Materials and Design, 2016, 89: 559-567. doi: 10.1016/j.matdes.2015.09.115
|
[44] |
MUKHERJEE T, ZHANG W, DEBROY T. An improved prediction of residual stresses and distortion in additive manufacturing[J]. Computational Materials Science, 2017, 126: 360-372. doi: 10.1016/j.commatsci.2016.10.003
|
[45] |
MEGAHED M, MINDT H W, N'DRI N, et al. Metal additive-manufacturing process and residual stress modeling[J]. Integrating Materials and Manufacturing Innovation, 2016, 5(4): 1-33. doi: 10.1186/s40192-016-0047-2
|
[46] |
ZHANG Ji-kui, WANG Xue-yuan, PADDEA S, et al. Fatigue crack propagation behaviour in wire+arc additive manufactured Ti-6Al-4V: effects of microstructure and residual stress[J]. Materials and Design, 2016, 90: 551-561. doi: 10.1016/j.matdes.2015.10.141
|
[47] |
SHIPLEY H, MCDONNELL D, CULLETON M, et al. Optimisation of process parameters to address fundamental challenges during selective laser melting of Ti-6Al-4V: a review[J]. International Journal of Machine Tools Manufacture, 2018, 128: 1-20. doi: 10.1016/j.ijmachtools.2018.01.003
|
[48] |
LINDROOS M, PINOMAA T, ANTIKAINEN A, et al. Micromechanical modeling approach to single track deformation, phase transformation and residual stress evolution during selective laser melting using crystal plasticity[J]. Additive Manufacturing, 2021, 38: 101819. doi: 10.1016/j.addma.2020.101819
|
[49] |
HACKEL L, RANKIN J R. RUBENCHIK A, et al. Laser peening: a tool for additive manufacturing post-processing[J]. Additive Manufacturing, 2018, 24: 67-75. doi: 10.1016/j.addma.2018.09.013
|
[50] |
KALENTICS N, BOILLAT E, PEYRE P, et al. Tailoring residual stress profile of selective laser melted parts by laser shock peening[J]. Additive Manufacturing, 2017, 16: 90-97. doi: 10.1016/j.addma.2017.05.008
|
[51] |
PYKA G, KERCKHOFS G, PAPANTONIOU I, et al. Surface roughness and morphology customization of additive manufactured open porous Ti6Al4V structures[J]. Materials, 2013, 6(10): 4737-4757. doi: 10.3390/ma6104737
|
[52] |
TURNER B N, GOLD S A. A review of melt extrusion additive manufacturing processes: Ⅱ. Materials, dimensional accuracy, and surface roughness[J]. Rapid Prototyping Journal, 2015, 21(3): 250-261. doi: 10.1108/RPJ-02-2013-0017
|
[53] |
STAVROULAKIS P, LEACH R K. Invited review article: review of post-process optical form metrology for industrial-grade metal additive manufactured parts[J]. Review Science Instruments, 2016, 87(4): 1-5. doi: 10.1063/1.4944983
|
[54] |
VRANCKEN B, THIJS L, KRUTH J P, et al. Heat treatment of Ti6Al4V produced by selective laser melting: microstructure and mechanical properties[J]. Journal of Alloys and Compounds, 2012, 541: 177-185. doi: 10.1016/j.jallcom.2012.07.022
|
[55] |
PRASHANTH K G, SCUDINO S, KLAUSS H J, et al. Microstructure and mechanical properties of Al-12Si produced by selective laser melting: effect of heat treatment[J]. Materials Science and Engineering: A, 2014, 590: 153-160. doi: 10.1016/j.msea.2013.10.023
|
[56] |
CHANDRAMOHAN P, BHERO S, VARACHIA F, et al. Laser additive manufactured Ti-6Al-4V alloy: heat treatment studies[J]. Transactions of Indian Institute of Metals, 2018, 71(3): 579-587. doi: 10.1007/s12666-017-1190-y
|
[57] |
HERZOG D, SEYDA V, WYCISK E, et al. Additive manufacturing of metals[J]. Acta Materials, 2016, 117: 371-92. doi: 10.1016/j.actamat.2016.07.019
|
[58] |
SCHAROWSKY T, JUECHTER V, SINGER R F, et al. Influence of the scanning strategy on the microstructure and mechanical properties in selective electron beam melting of Ti-6Al-4V[J]. Advanced Engineering Materials, 2015, 17(11): 1573-1578. doi: 10.1002/adem.201400542
|
[59] |
MAA C P, GUANA Y C, ZHOU W. Laser polishing of additive manufactured Ti alloys[J]. Optics and Lasers in Engineering, 2017, 93: 171-177. doi: 10.1016/j.optlaseng.2017.02.005
|
[60] |
BHADURIA D, PENCHEVA P, BATALA A, et al. Laser polishing of 3D printed mesoscale components[J]. Applied Surface Science, 2017, 405: 29-46. doi: 10.1016/j.apsusc.2017.01.211
|
[61] |
ČERNAŠĖJUS O, ŠKAMAT J, MARKOVIČ V, et al. Surface laser processing of additive manufactured 1.2709 steel parts: preliminary study[J]. Advance in Materials Science Engineering, 2019, 2019: 1-9. http://www.researchgate.net/publication/332152209_Surface_Laser_Processing_of_Additive_Manufactured_12709_Steel_Parts_Preliminary_Study
|
[62] |
LEUDERS S, THÖNE M, RIEMER A, et al. On the mechanical behaviour of titanium alloy Ti-6Al-4V manufactured by selective laser melting: fatigue resistance and crack growth performance[J]. International Journal of Fatigue, 2013, 48: 300-307. doi: 10.1016/j.ijfatigue.2012.11.011
|
[63] |
BAGHERI A, MAHTABI M J, SHAMSAEI N. Fatigue behavior and cyclic deformation of additive manufactured NiTi[J]. Journal of Materials Processing Technology, 2018, 252: 440-453. doi: 10.1016/j.jmatprotec.2017.10.006
|
[64] |
宋富阳, 张剑, 郭会明, 等. 热等静压技术在镍基铸造高温合金领域的应用研究[J]. 材料工程, 2021, 49(1): 65-74.
SONG Fu-yang, ZHANG Jian, GUO Hui-ming, et al. Research on application of hot isostatic pressing technology in the field of nickel-based cast superalloys[J]. Journal of Materials Engineering, 2021, 49(1): 65-74. (in Chinese)
|
[65] |
PORTOLÉS L, JORDÁ O, JORDÁ L, et al. A qualification procedure to manufacture and repair aerospace parts with electron beam melting[J]. Journal of Manufacturing Systems, 2016, 41: 65-75. doi: 10.1016/j.jmsy.2016.07.002
|
[66] |
CUNNINGHAM C, WIKSHǺLAND S, XU F, et al. Cost modelling and sensitivity analysis of wire and arc additive manufacturing[J]. Procedia Manufacturing, 2017, 11: 650-657. doi: 10.1016/j.promfg.2017.07.163
|
[67] |
GU Jiang-long, DING Jia-luo, WILLIAMS S W, et al. The strengthening effect of inter-layer cold working and post-deposition heat treatment on the additively manufactured Al-6.3 Cu alloy[J]. Materials Science and Engineering: A, 2016, 651: 18-26. doi: 10.1016/j.msea.2015.10.101
|
[68] |
COLEGROVE P A, DONOGHUE J, MARTINA F, et al. Application of bulk deformation methods for microstructural and material property improvement and residual stress and distortion control in additively manufactured components[J]. Scripta Materialia, 2017, 135: 111-118. doi: 10.1016/j.scriptamat.2016.10.031
|
[69] |
COLEGROVE P A, COULES H E, FAIRMAN J, et al. Microstructure and residual stress improvement in wire and arc additively manufactured parts through high-pressure rolling[J]. Journal of Materials Processing Technology, 2013, 213(10): 1782-1791. doi: 10.1016/j.jmatprotec.2013.04.012
|
[70] |
GISARIO A, KAZARIAN M, MARTINA F, et al. Metal additive manufacturing in the commercial aviation industry: a review[J]. Journal of Manufacturing Systems, 2019, 53: 124-149. doi: 10.1016/j.jmsy.2019.08.005
|
[71] |
YADOLLAHI A, SHAMSAEI N. Additive manufacturing of fatigue resistant materials: challenges and opportunities[J]. International Journal of Fatigue, 2017, 98: 14-31. doi: 10.1016/j.ijfatigue.2017.01.001
|
[72] |
GORELIK M. Additive manufacturing in the context of structural integrity[J]. International Journal of Fatigue, 2017, 94: 168-177. doi: 10.1016/j.ijfatigue.2016.07.005
|
[73] |
STERLING A, SHAMSAEI N, TORRIES B, et al. Fatigue behaviour of additively manufactured Ti-6Al-4V[J]. Procedia Engineering, 2015, 133: 576-589. doi: 10.1016/j.proeng.2015.12.632
|
[74] |
STERLING A J, TORRIES B, SHAMSAEI N, et al. Fatigue behavior and failure mechanisms of direct laser deposited Ti-6Al-4V[J]. Materials Science and Engineering: A, 2016, 655: 100-112. doi: 10.1016/j.msea.2015.12.026
|
[75] |
BENEDETTI M, TORRESANI E, LEONI M, et al. The effect of post-sintering treatments on the fatigue and biological behavior of Ti-6Al-4V ELI parts made by selective laser melting[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 71: 295-306. doi: 10.1016/j.jmbbm.2017.03.024
|
[76] |
SUN Y, GULIZIA S, OH C, et al. The influence of as-built surface conditions on mechanical properties of Ti-6Al-4V additively manufactured by selective electron beam melting[J]. JOM, 2016, 68(3): 791-798. doi: 10.1007/s11837-015-1768-y
|
[77] |
EDWARDS P, RAMULU M. Fatigue performance evaluation of selective laser melted Ti-6Al-4V[J]. Materials Science and Engineering: A, 2014, 598: 327-337. doi: 10.1016/j.msea.2014.01.041
|
[78] |
MURAKAMI Y. Material defects as the basis of fatigue design[J]. International Journal of Fatigue, 2012, 41: 2-10. doi: 10.1016/j.ijfatigue.2011.12.001
|
[79] |
万志鹏, 王宠, 蒋文涛, 等. 孔洞缺陷对3D打印Ti-6Al-4V合金疲劳试样应力分布的影响[J]. 实验力学, 2017, 32(1): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201701001.htm
WAN Zhi-peng, WANG Chong, JIANG Wen-tao, et al. On the effect of void defects on stress distribution of Ti-6Al-4V alloy fatigue specimen in 3D printing[J]. Journal of Experimental Mechanics, 2017, 32(1): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201701001.htm
|
[80] |
TAMMAS-WILLIAMS S, WITHERS P J, TODD I, et al. The influence of porosity on fatigue crack initiation in additively manufactured titanium components[J]. Scientific Reports, 2017, 7(1): 7308-1-13. doi: 10.1038/s41598-017-06504-5
|
[81] |
SPIERINGS A B, STARR T L, WEGENER K. Fatigue performance of additive manufactured metallic parts[J]. Rapid Prototyping Journal, 2013, 19(2): 88-94. doi: 10.1108/13552541311302932
|
[82] |
TROSCH T, STRÖßNER J, VÖLKL R, et al. Microstructure and mechanical properties of selective laser melted Inconel 718 compared to forging and casting[J]. Materials Letters, 2016, 164: 428-431. doi: 10.1016/j.matlet.2015.10.136
|
[83] |
SHAMSAEI N, YADOLLAHI A, BIAN L, et al. An overview of direct laser deposition for additive manufacturing, Part Ⅱ: mechanical behavior, process parameter optimization and control[J]. Additive Manufacturing, 2015, 8: 12-35. doi: 10.1016/j.addma.2015.07.002
|
[84] |
OLIVEIRA J P, SANTOS T G, MIRANDA R M. Revisiting fundamental welding concepts to improve additive manufacturing: from theory to practice[J]. Progress in Materials Science, 2020, DOI: 10.1016/j.pmatsci.2019.100590.
|
[85] |
XIE C, WU S C, YU Y K, et al. Defect-correlated fatigue resistance of additively manufactured Al-Mg4.5Mn alloy with in situ micro-rolling[J]. Journal of Materials Processing Technology, 2021, 291: 117039. doi: 10.1016/j.jmatprotec.2020.117039
|
[86] |
WITHERS P. Fracture mechanics by three-dimensional crack-tip synchrotron X-ray microscopy[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015, DOI: 10.1098/rsta.2013.0157.
|
[87] |
STOCK S R. Recent advances in X-ray microtomography applied to materials[J]. International Materials Reviews, 2008, 53(3): 129-181. doi: 10.1179/174328008X277803
|
[88] |
WU Sheng-chuan, XIAO Ti-qiao, WITHERS P J. The imaging of failure in structural materials by synchrotron X-ray micromography[J]. Engineering Fracture Mechanics, 2017, 182: 127-156. doi: 10.1016/j.engfracmech.2017.07.027
|
[89] |
WU Sheng-chuan, YU Cheng, YU Pei-shi, et al. Corner fatigue cracking behavior of hybrid laser AA7020 welds by synchrotron X-ray computed micrography[J]. Materials Science and Engineering: A, 2016, 651: 604-614. doi: 10.1016/j.msea.2015.11.011
|
[90] |
WU Sheng-chuan, HU Ya-nan, DUAN Hao, et al. On the fatigue performance of laser hybrid welded high Zn 7000 alloys for next generation railway components[J]. International Journal of Fatigue, 2016, 91: 1-10. doi: 10.1016/j.ijfatigue.2016.05.017
|
[91] |
吴圣川, 吴正凯, 胡雅楠, 等. 同步辐射光源四维原位成像助力材料微结构损伤高分辨表征[J]. 机械工程材料, 2020, 44(6): 72-76. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC202006017.htm
WU Sheng-chuan, WU Zheng-kai, HU Ya-nan, et al. High-resolution characterization of microstructural damage in materials by synchrotron radiation source 4D in-situ tomography[J]. Materials for Mechanical Engineering, 2020, 44(6): 72-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXGC202006017.htm
|
[92] |
吴正凯, 张杰, 吴圣川, 等. 同步辐射X射线原位三维成像在金属增材制件缺陷评价中的应用[J]. 无损检测, 2020, 42(7): 46-50. https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC202007013.htm
WU Zheng-kai, ZHANG Jie, WU Sheng-chuan, et al. Application of insitu three-dimensional synchrotron radiation X-ray tomography for defects evaluation of metal additive manufactured components[J]. Nondestructive Testing, 2020, 42(7): 46-50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSJC202007013.htm
|
[93] |
HU Ya-nan, WU Sheng-chuan, WITHERS P J, et al. The effect of manufacturing defects on the fatigue life of selective laser melted Ti-6Al-4V structures[J]. Materials and Design, 2020, 192: 108708. doi: 10.1016/j.matdes.2020.108708
|
[94] |
HU Ya-nan, WU Sheng-chuan, WU Zheng-kai, et al. A new approach to correlate the defect population with the fatigue life of selective laser melted Ti-6Al-4V alloy[J]. International Journal of Fatigue, 2020, 136: 1-11. http://www.sciencedirect.com/science/article/pii/S0142112320301158
|
[95] |
罗琳胤, 江武, 郝晓宁, 等. 民用飞机起落架激光/电子束增材制造技术应用研究[J]. 航空制造技术, 2020, 63(10): 42-47. https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ202010003.htm
LUO Lin-yin, JIANG Wu, HAO Xiao-ning, et al. Application of laser/electron beam additive manufacturing for civil aircraft landing gear[J]. Aeronautical Manufacturing Technology, 2020, 63(10): 42-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKGJ202010003.htm
|
[96] |
VANDOORNE R, GRÄBE P J. Stochastic modelling for the maintenance of life cycle cost of rails using Monte Carlo simulation[J]. Journal of rail and rapid transit, 2018, 232(4): 1240-1251. doi: 10.1177/0954409717714645
|
[97] |
王平, 盛宏威, 冀凯伦, 等. 高速载运设施的无损检测技术应用和发展趋势[J]. 数据采集与处理, 2020, 35(2): 195-209. https://www.cnki.com.cn/Article/CJFDTOTAL-SJCJ202002002.htm
WANG Ping, SHENG Hong-wei, JI Kai-lun, et al. Application and development trend of non-destructive testing technology for high-speed transportation facilities[J]. Journal of Data Acquisition and Processing, 2020, 35(2): 195-209. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJCJ202002002.htm
|
[98] |
周磊. 表面裂纹对铁路货车车轴性能的影响[D]. 成都: 西南交通大学, 2013.
ZHOU Lei. Effects of surface crack to freight train axle's performance[D]. Chengdu: Southwest Jiaotong University, 2013. (in Chinese)
|
[99] |
李丛辰, 陈文静, 向超, 等. EA4T钢表面激光熔覆Fe314合金熔覆层的微观组织及性能[J]. 电焊机, 2016, 46(5): 73-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DHJI201605022.htm
LI Cong-chen, CHEN Wen-jing, XIANG Chao, et al. Microstructure and properties of Fe314 alloy cladding layer by laser cladding on EA4T steel[J]. Electric Welding Machine, 2016, 46(5): 73-77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DHJI201605022.htm
|
[100] |
XU Zhong-wei, WU Sheng-chuan, WANG Xi-shu. Fatigue evaluation for high-speed railway axles with surface scratch[J]. International Journal of Fatigue, 2019, 123: 79-86. doi: 10.1016/j.ijfatigue.2019.02.016
|
[101] |
LIAO Zhen, YANG Bing, QIN Ya-hang, et al. Short fatigue crack behaviour of LZ50 railway axle steel under multi-axial loading in low-cycle fatigue[J]. International Journal of Fatigue, 2020, 132: 105366. doi: 10.1016/j.ijfatigue.2019.105366
|
[102] |
YANG Bing, LIAO Zhen, QIN Ya-hang, et al. Comparative study on prediction effects of short fatigue crack propagation rate by two different calculation methods[J]. Journal of Physics Conference Series, 2017, 843(1): 012043. doi: 10.1088/1742-6596/843/1/012043
|
[103] |
MONA S. Investigation of laser deposited wear resistant coatings on railway axle steels[D]. Melbourne: RMIT University, 2013.
|
[104] |
祝弘滨, 刘昱. 金属3D打印技术在轨道交通装备领域的应用研究现状[J]. 现代城市轨道交通, 2019(10): 77-81. https://www.cnki.com.cn/Article/CJFDTOTAL-XDGD201910019.htm
ZHU Hong-bin, LIU Yu. Current research status of metal prototyping manufacturing (3D-printing) technology application in rail transit equipment[J]. Modern Urban Transit, 2019(10): 77-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDGD201910019.htm
|
[105] |
马明明, 谭迈之, 孙德祥, 等. 激光选区熔化成形高压接地开关传动件工艺与性能研究[J]. 电力机车与城轨车辆, 2018, 41(1): 76-80. https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI201801021.htm
MA Ming-ming, TAN Mai-zhi, SUN De-xiang, et al. Fabrication of transmission part in high-voltage earthing switch by selective laser melting[J]. Electric Locomotives and Mass Transit Vehicles, 2018, 41(1): 76-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DJJI201801021.htm
|
[106] |
刘明磊, 刘芳, 陆兴. 激光熔覆Ni30WC合金粉末修补42CrMo钢的研究[J]. 大连交通大学学报, 2017, 38(4): 130-133. https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201704027.htm
LIU Ming-lei, LIU Fang, LU Xing. Repair of 42CrMo steel by laser cladding Ni30WC alloy powder[J]. Journal of Dalian Jiaotong University, 2017, 38(4): 130-133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DLTD201704027.htm
|
[107] |
殷晓耀. 高速列车车轮踏面损伤分析及激光熔覆修复研究[D]. 南昌: 华东交通大学, 2016.
YIN Xiao-yao. Research of wheel tread damage and its laser cladding preparation in high-speed train[D]. Nanchang: East China Jiaotong University, 2016. (in Chinese)
|
[108] |
陈常义, 陈江. 铁路货车轮辐板孔裂纹激光再制造[J]. 中国表面工程, 2011, 24(2): 92-96. doi: 10.3969/j.issn.1007-9289.2011.02.018
CHEN Chang-yi, CHEN Jiang. Remanufacturing railway wheels with web plate hole by laser cladding cracks[J]. China Surface Engineering, 2011, 24(2): 92-96. (in Chinese) doi: 10.3969/j.issn.1007-9289.2011.02.018
|
[109] |
田威, 廖文和, 刘长毅, 等. 基于绿色再制造的火车车钩裂纹激光修复和表面强化[J]. 应用激光, 2008, 28(2): 103-107. doi: 10.3969/j.issn.1000-372X.2008.02.004
TIAN Wei, LIAO Wen-he, LIU Chang-yi, et al. Laser cladding and surface hardening of railcar coupler based on green remanufacture engineering[J]. Applied Laser, 2008, 28(2): 103-107. (in Chinese) doi: 10.3969/j.issn.1000-372X.2008.02.004
|
[110] |
郭云龙, 井国庆, 张辉. 铁路工程中的3D打印: 发展、挑战和展望[J]. 工业技术创新, 2017, 4(4): 23-27. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJS201704005.htm
GUO Yun-long, JING Guo-qing, ZHANG Hui. 3D printing in railway engineering: development, challenges and prospects[J]. Industrial Technology Innovation, 2017, 4(4): 23-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYJS201704005.htm
|
[111] |
曹金, 祝弘滨, 鲍飞, 等. 3D打印在轨道交通领域的研究现状及展望[J]. 机车车辆工艺, 2018(3): 10-11. https://www.cnki.com.cn/Article/CJFDTOTAL-JCCL201803004.htm
CAO Jin, ZHU Hong-bin, BAO Fei, et al. Status quo and prospect of 3D printing research for rail transit sector[J]. Locomotive and Rolling Stock Technology, 2018(3): 10-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCCL201803004.htm
|