Citation: | TANG Zhao, DONG Shao-di, LUO Ren, JIANG Tao, DENG Rui, ZHANG Jian-jun. Application advances of artificial intelligence algorithms in dynamics simulation of railway vehicle[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 250-266. doi: 10.19818/j.cnki.1671-1637.2021.01.012 |
[1] |
AHMED A K W, SANKAR S. Lateral stability behavior of railway freight car system with elasto-damper coupled wheelset: part 1—wheelset model[J]. Journal of Mechanisms, Transmissions, and Automation in Design, 1987, 109(4): 493-499. doi: 10.1115/1.3258827
|
[2] |
WICKENS A H. Static and dynamic stability of unsymmetric two-axle railway vehicles possessing perfect steering[J]. Vehicle System Dynamics, 1982, 11(2): 89-106. doi: 10.1080/00423118208968691
|
[3] |
LEE S, CHENG Y. Influences of the vertical and the roll motions of frames on the hunting stability of trucks moving on curved tracks[J]. Journal of Sound and Vibration, 2006, 294(3): 441-453. doi: 10.1016/j.jsv.2005.10.025
|
[4] |
LEE S, CHENG Y. Hunting stability analysis of high-speed railway vehicle trucks on tangent tracks[J]. Journal of Sound and Vibration, 2005, 282(3-5): 881-898. doi: 10.1016/j.jsv.2004.03.050
|
[5] |
LEE S Y, CHENG Y C. Nonlinear analysis on hunting stability for high-speed railway vehicle trucks on curved tracks[J]. Journal of Vibration and Acoustics, 2005, 127(4): 324-333. doi: 10.1115/1.1924640
|
[6] |
FAN Yang-tsai, WU Wen-fang. Stability analysis and derailment evaluation of rail vehicles[J]. International Journal of Heavy Vehicle Systems, 2006, 13(3): 194-211. doi: 10.1504/IJHVS.2006.010018
|
[7] |
KIM P, JUNG J, SEOK J. A parametric dynamic study on hunting stability of full dual-bogie railway vehicle[J]. International Journal of Precision Engineering and Manufacturing, 2011, 12(3): 505-519. doi: 10.1007/s12541-011-0064-1
|
[8] |
SEZER S, ATALAY A E. Application of fuzzy logic based control algorithms on a railway vehicle considering random track irregularities[J]. Journal of Vibration and Control, 2011, 18(8): 1177-1198. http://www.ingentaconnect.com/content/sageus/10775463/2012/00000018/00000008/art00010
|
[9] |
SAYYAADI H, SHOKOUHI N. A new model in rail-vehicles dynamics considering nonlinear suspension components behavior[J]. International Journal of Mechanical Sciences, 2009, 51(3): 222-232. doi: 10.1016/j.ijmecsci.2009.01.003
|
[10] |
倪纯双, 贺启庸, 洪嘉振. 铁路车辆多体动力学综述[J]. 中国铁道科学, 1996, 17(4): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK604.000.htm
NI Chun-shuang, HE Qi-yong, HONG Jia-zhen. Review of railway multibody dynamic systems[J]. China Railway Science, 1996, 17(4): 1-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK604.000.htm
|
[11] |
翟婉明. 车辆-轨道垂向系统的统一模型及其耦合动力学原理[J]. 铁道学报, 1992, 14(3): 10-21. doi: 10.3321/j.issn:1001-8360.1992.03.002
ZHAI Wan-ming. The vertical model of vehicle-track system and its coupling dynamics[J]. Journal of the China Railway Society, 1992, 14(3): 10-21. (in Chinese) doi: 10.3321/j.issn:1001-8360.1992.03.002
|
[12] |
梁波, 蔡英, 朱东生. 车-路垂向耦合系统的动力分析[J]. 铁道学报, 2000, 22(5): 65-71. doi: 10.3321/j.issn:1001-8360.2000.05.015
LIANG Bo, CAI Ying, ZHU Dong-sheng. Dynamic analysis on vehicle-subgrade model of vertical coupled system[J]. Journal of the China Railway Society, 2000, 22(5): 65-71. (in Chinese) doi: 10.3321/j.issn:1001-8360.2000.05.015
|
[13] |
陈果, 翟婉明, 左洪福. 车辆-轨道耦合系统随机振动响应特性分析[J]. 交通运输工程学报, 2001, 1(1): 13-16. doi: 10.3321/j.issn:1671-1637.2001.01.003
CHEN Guo, ZHAI Wan-ming, ZUO Hong-fu. Analysis of the random vibration responses characteristics of the vehicle-track coupling system[J]. Journal of Traffic and Transportation Engineering, 2001, 1(1): 13-16. (in Chinese) doi: 10.3321/j.issn:1671-1637.2001.01.003
|
[14] |
苏谦, 蔡英. 高速铁路路基结构空间时变系统耦合动力分析[J]. 西南交通大学学报, 2001, 36(5): 509-513. doi: 10.3969/j.issn.0258-2724.2001.05.014
SU Qian, CAI Ying. A spatial time-varying coupling model for dynamic analysis of high speed railway subgrade[J]. The Journal of Social Sciences of Southwest Jiaotong University, 2001, 36(5): 509-513. (in Chinese) doi: 10.3969/j.issn.0258-2724.2001.05.014
|
[15] |
翟婉明, 任尊松. 提速列车与道岔的垂向相互作用研究[J]. 铁道学报, 1998, 20(3): 33-38. doi: 10.3321/j.issn:1001-8360.1998.03.006
ZHAI Wan-ming, REN Zun-song. An investigation on vertical interactions between speed-raising trains and turnouts[J]. Journal of the China Railway Society, 1998, 20(3): 33-38. (in Chinese) doi: 10.3321/j.issn:1001-8360.1998.03.006
|
[16] |
翟婉明, 韩卫军, 蔡成标, 等. 高速铁路板式轨道动力特性研究[J]. 铁道学报, 1999, 21(6): 65-69. doi: 10.3321/j.issn:1001-8360.1999.06.016
ZHAI Wan-ming, HAN Wei-dong, CAI Cheng-biao, et al. Dynamic properties of high speed railway slab tracks[J], Journal of the China Railway Society, 1999, 21(6): 65-69. (in Chinese) doi: 10.3321/j.issn:1001-8360.1999.06.016
|
[17] |
蔡成标, 翟婉明, 王其昌. 高速列车与高架桥上无碴轨道相互作用研究[J]. 铁道工程学报, 2000(3): 29-32. doi: 10.3969/j.issn.1006-2106.2000.03.008
CAI Cheng-biao, ZHAI Wan-ming, WANG Qi-chang. Research on vertical interactions between high-speed train and ballastless track on bridge[J]. Journal of Railway Engineering Society, 2000(3): 29-32. (in Chinese) doi: 10.3969/j.issn.1006-2106.2000.03.008
|
[18] |
张敏, 范屹立, 马卫华, 等. 滑差频率对磁浮车辆运行性能的影响[J]. 交通运输工程学报, 2019, 19(5): 64-73. doi: 10.3969/j.issn.1671-1637.2019.05.008
ZHANG Min, FAN Yi-li, MA Wei-hua, et al. Influence of slip frequency on running performance of maglev vehicle[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 64-73. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.05.008
|
[19] |
翟婉明. 车辆-轨道耦合动力学[M]. 北京: 科学出版社, 2015.
ZHAI Wan-ming. Vehicle-Track Coupling Dynamics[M]. Beijing: Science Press, 2015. (in Chinese)
|
[20] |
RIPKE B, KNOTHE K. Simulation of high frequency vehicle-track interactions[J]. Vehicle System Dynamics, 1995, 24(S1): 72-85.
|
[21] |
OSCARSSON J, DAHLBERG T. Dynamic train/track/ballast interaction-computer models and full-scale experiments[J]. Vehicle System Dynamics, 1998, 29(S1): 73-84. doi: 10.1080/00423119808969553
|
[22] |
于梦阁, 李海庆, 刘加利, 等. 强风雨环境下高速列车空气动力学性能研究[J]. 机械工程学报, 2020, 56(4): 185-192. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202004023.htm
YU Meng-ge, LI Hai-qing, LIU Jia-li, et al. Study on the aerodynamic performance of the high-speed train under strong wind and railfall environment[J]. Chinese Journal of Mechanical Engineering, 2020, 56(4): 185-192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202004023.htm
|
[23] |
于梦阁, 李田, 张骞, 等. 强降雨环境下高速列车空气动力学性能[J]. 交通运输工程学报, 2019, 19(5): 96-105. doi: 10.3969/j.issn.1671-1637.2019.05.011
YU Meng-ge, LI Tian, ZHANG Qian, et al. Aerodynamic performance of high-speed train under heavy rain condition[J]. Journal of Traffic and Transportation Engineering, 2019, 19(5): 96-105. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.05.011
|
[24] |
于梦阁, 张继业, 张卫华. 侧风下高速列车车体与轮对的运行姿态[J]. 交通运输工程学报, 2011, 11(4): 48-55. http://transport.chd.edu.cn/oa/DArticle.aspx?type=view&id=201104008
YU Meng-ge, ZHANG Ji-ye, ZHANG Wei-hua. Running attitudes of car body and wheelset for high-speed train under cross wind[J]. Journal of Traffic and Transportation Engineering, 2011, 11(4): 48-55. (in Chinese) http://transport.chd.edu.cn/oa/DArticle.aspx?type=view&id=201104008
|
[25] |
成楠. 侧风作用下的高速列车空气动力学研究[D]. 成都: 西南交通大学, 2017.
CHENG Nan. Study on aerodynamic characteristics of a high speed train under cross wind[D]. Chengdu: Southwest Jiaotong University, 2017. (in Chinese)
|
[26] |
李雪冰, 侯传伦, 张曙光, 等. 高速列车交会时的风致振动研究[J]. 振动与冲击, 2009, 28(7): 81-84. doi: 10.3969/j.issn.1000-3835.2009.07.017
LI Xue-bing, HOU Chuan-lun, ZHANG Shu-guang, et al. Flow-induced vibration of high-speed trains in passing events[J]. Journal of Vibration and Shock, 2009, 28(7): 81-84. (in Chinese) doi: 10.3969/j.issn.1000-3835.2009.07.017
|
[27] |
李雪冰, 张继业, 张卫华. 高速列车交会时气流诱发振动的仿真研究[J]. 铁道车辆, 2009, 47(12): 9-12. doi: 10.3969/j.issn.1002-7602.2009.12.003
LI Xue-bing, ZHANG Ji-ye, ZHANG Wei-hua. Simulation research on vibration caused by airflow while high speed trains passing each other[J]. Rolling Stock, 2009, 47(12): 9-12. (in Chinese) doi: 10.3969/j.issn.1002-7602.2009.12.003
|
[28] |
田红旗. 列车交会空气压力波研究及应用[J]. 铁道科学与工程学报, 2004, 1(1): 83-89. doi: 10.3969/j.issn.1672-7029.2004.01.015
TIAN Hong-qi. Research and applications of air pressure pulse from trains passing each other[J]. Journal of Railway Science and Engineering, 2004, 1(1): 83-89. (in Chinese) doi: 10.3969/j.issn.1672-7029.2004.01.015
|
[29] |
田红旗, 许平, 梁习锋, 等. 列车交会压力波与运行速度的关系[J]. 中国铁道科学, 2006, 27(6): 64-67. doi: 10.3321/j.issn:1001-4632.2006.06.013
TIAN Hong-qi, XU Ping, LIANG Xi-feng, et al. Correlation between pressure wave of train passing and running speed[J]. Journal of Railway Science and Engineering, 2006, 27(6): 64-67. (in Chinese) doi: 10.3321/j.issn:1001-4632.2006.06.013
|
[30] |
王英学, 高波, 骆建军, 等. 高速列车进入隧道空气动力学模型实验分析[J]. 空气动力学学报, 2004, 22(3): 346-351. doi: 10.3969/j.issn.0258-1825.2004.03.019
WANG Ying-xue, GAO Bo, LUO Jian-jun, et al. Model experiment and numeral simulation of the aerodynamics character of high-speed train entering tunnel[J]. Acta Aerodynamica Sinica, 2004, 22(3): 346-351. (in Chinese) doi: 10.3969/j.issn.0258-1825.2004.03.019
|
[31] |
万晓燕, 吴剑. 时速200 km动车组通过隧道时空气动力学效应现场试验与研究[J]. 现代隧道技术, 2006, 43(1): 43-48. doi: 10.3969/j.issn.1009-6582.2006.01.008
WAN Xiao-yan, WU Jian. In-situ test and study on the aerodynamic effect of the rolling stock passing through tunnels with a speed of 200 km/h[J]. Modern Tunnelling Technology, 2006, 43(1): 43-48. (in Chinese) doi: 10.3969/j.issn.1009-6582.2006.01.008
|
[32] |
骆建军, 姬海东. 高速列车进入有缓冲结构隧道的压力变化研究[J]. 铁道学报, 2011, 33(9): 114-118. doi: 10.3969/j.issn.1001-8360.2011.09.020
LUO Jian-jun, JI Hai-dong. Study on changes of pressure waves induced by a high-speed train entering into a tunnel with hood[J]. Journal of the China Railway Society, 2011, 33(9): 114-118. (in Chinese) doi: 10.3969/j.issn.1001-8360.2011.09.020
|
[33] |
赵晶, 李人宪. 高速列车进入隧道的气动作用数值模拟[J]. 西南交通大学学报, 2009, 44(1): 96-100. doi: 10.3969/j.issn.0258-2724.2009.01.018
ZHAO Jing, LI Ren-xian. Numerical analysis of aerodynamics of high-speed trains running into tunnels[J]. Journal of Southwest Jiaotong University, 2009, 44(1): 96-100. (in Chinese) doi: 10.3969/j.issn.0258-2724.2009.01.018
|
[34] |
刘凤华, 余以正. 地铁列车隧道气动力学试验与仿真[J]. 大连交通大学学报, 2013, 34(4): 7-11. doi: 10.3969/j.issn.1673-9590.2013.04.002
LIU Feng-hua, YU Yi-zheng. Comparison of subway train tunnel aerodynamic test and simulation analysis[J]. Journal of Dalian Jiaotong University, 2013, 34(4): 7-11. (in Chinese) doi: 10.3969/j.issn.1673-9590.2013.04.002
|
[35] |
田红旗, 梁习锋, 许平. 列车空气动力性能研究及外形、结构设计方法[J]. 中国铁道科学, 2002, 23(5): 138-141. doi: 10.3321/j.issn:1001-4632.2002.05.027
TIAN Hong-qi, LIANG Xi-feng, XU Ping. Research on the aerodynamic performance of train and its configuration and structure design method[J]. China Railway Science, 2002, 23(5): 138-141. (in Chinese) doi: 10.3321/j.issn:1001-4632.2002.05.027
|
[36] |
梁习锋, 张健. 工业造型和空气动力学在流线型列车外形设计中的应用[J]. 铁道车辆, 2002, 40(7): 5-7. doi: 10.3969/j.issn.1002-7602.2002.07.002
LIANG Xi-feng, ZHANG Jian. Application of industrial visual design and aerodynamics in streamlined train contour design[J]. Rolling Stock, 2002, 40(7): 5-7. (in Chinese) doi: 10.3969/j.issn.1002-7602.2002.07.002
|
[37] |
罗洁, 张继业. 高速列车气动性能研究及结构优化设计[C]//中国力学学会. 第十届全国动力学与控制学术会议. 北京: 中国力学学会, 2016: 224-225.
LUO Jie, ZHANG Ji-ye. High-speed train aerodynamic performance research and structural optimization design[C]//Chinese Society of Theoretical and Applied Mechanics. 10th National Symposium on Dynamics and Control. Beijing: Chinese Society of Theoretical and Applied Mechanics, 2016: 224-225. (in Chinese)
|
[38] |
SHEN Z Y, HEDRICK J K, ELKINS J A. A comparison of alternative creep force models for rail vehicle dynamic analysis[J]. Vehicle System Dynamics, 1983, 12(1-3): 79-83. doi: 10.1080/00423118308968725
|
[39] |
张卫华, 张曙光. 高速列车耦合大系统动力学及服役模拟[J]. 西南交通大学学报, 2008, 43(2): 147-152. doi: 10.3969/j.issn.0258-2724.2008.02.001
ZHANG Wei-hua, ZHANG Shu-guang. Dynamics and service simulation for general coupling system of high-speed trains[J]. Journal of Southwest Jiaotong University, 2008, 43(2): 147-152. (in Chinese) doi: 10.3969/j.issn.0258-2724.2008.02.001
|
[40] |
沈志云. 论我国高速铁路技术创新发展的优势[J]. 中国科学, 2012, 57(8): 594-599. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201208002.htm
SHEN Zhi-yun. The superiorities in innovatively developing high-speed train technology in China[J]. Science China, 2012, 57(8): 594-599. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201208002.htm
|
[41] |
聂宁, 官科, 钟章队. 德国铁路4.0战略[J]. 中国铁路, 2017(5): 86-90. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201705018.htm
NIE Ning, GUAN Ke, ZHONG Zhang-dui. German railway 4.0 strategy[J]. China Railway, 2017(5): 86-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201705018.htm
|
[42] |
王同军. 中国智能高铁发展战略研究[J]. 中国铁路, 2019(1): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201901002.htm
WANG Tong-jun. Study on the development strategy of China intelligent high speed railway[J]. China Railway, 2019(1): 9-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG201901002.htm
|
[43] |
王燕鹏, 韩涛, 王学昭. G20国家人工智能科技发展态势分析[J]. 科学观察, 2019, 14(1): 20-32. https://www.cnki.com.cn/Article/CJFDTOTAL-KCGC201901002.htm
WANG Yan-peng, HAN Tao, WANG Xue-zhao. The development trend of artificial intelligence in the Group 20[J]. Science Focus, 2019, 14(1): 20-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KCGC201901002.htm
|
[44] |
王万森. 人工智能原理及其应用(第4版)[M]. 北京: 电子工业出版社, 2018.
WANG Wan-sen. Artificial Intelligence (AI) and Applications[M]. Beijing: Electronics Industry Publishing House, 2018. (in Chinese)
|
[45] |
HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554. doi: 10.1162/neco.2006.18.7.1527
|
[46] |
ALPAYDIN E. Introduction to Machine Learning[M]. London: MIT Press, 2014.
|
[47] |
HENNING H O, CHRISTOPH H, ROLF I. Vehicle dynamics based on hybrid simulation modeling[C]//IEEE. International Conference on Advanced Intelligent Mechatronics. New York: IEEE, 1999, 1014-1019.
|
[48] |
NIE Yin-yu, TANG Zhao, LIU Feng-jia, et al. Data-driven dynamics simulation for railway vehicles[J]. Vehicle System Dynamics, 2018, 56(3): 406-427. doi: 10.1080/00423114.2017.1381981
|
[49] |
TANG Zhao, ZHU Yun-rui, NIE Yin-yu, et al. Data-driven train set crash dynamics simulation[J]. Vehicle System Dynamics, 2017, 55(2): 149-167. doi: 10.1080/00423114.2016.1249377
|
[50] |
YIM Y U, OH S Y. Modeling of vehicle dynamics from real vehicle measurements using a neural network with two-stage hybrid learning for accurate long-term prediction[J]. IEEE Transactions on Vehicular Technology, 2004, 53(4): 1076-1084. doi: 10.1109/TVT.2004.830145
|
[51] |
CHELI F, ROCCHI D, SCHITO P, et al. Neural network algorithm for evaluating wind velocity from pressure measurements performed on a train's surface[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2015, 230(3): 961-970.
|
[52] |
KOGANEI R, SASAKI K, WATANABE N. Characteristic identification of oil dampers for railway vehicles using Neural Networks[J]. WIT Transactions on the Built Environment, 2008, 103: 725-733. http://www.researchgate.net/publication/271436134_Characteristic_identification_of_oil_dampers_for_railway_vehicles_using_Neural_Networks
|
[53] |
IWNICKI S D, STOW J, PARKINSON H. Assessing railway vehicle derailment potential using neural networks[J]. Rail Technology Unit, 1999: 1-11. http://www.researchgate.net/publication/27398318_Assessing_railway_vehicle_derailment_potential_using_neural_networks
|
[54] |
GUALANO L, IWNICKI S D, PONNAPALLI P V S, et al. Prediction of wheel-rail forces, derailment and passenger comfort using artificial neural networks[C]//ASER. EURNEX-ŽEL 2006, 14th International Symposium. Bratislava: ASER, 2006: 1-10.
|
[55] |
URDA P, ACEITUNO J F, MUÑOZ S, et al. Artificial neural networks applied to the measurement of lateral wheel-rail contact force: A comparison with a harmonic cancellation method[J]. Mechanism and Machine Theory, 2020, 153: 1-18.
|
[56] |
FALOMI S, MALVEZZI M, MELI E, et al. Determination of wheel-rail contact points: comparison between classical and neural network based procedures[J]. Meccanica, 2009, 44(6): 661-686. doi: 10.1007/s11012-009-9202-6
|
[57] |
FALOMI S, MALVEZZI M, MELI E. Multibody modeling of railway vehicles: innovative algorithms for the detection of wheel-rail contact points[J]. Wear, 2011, 271(1/2): 453-461. http://www.sciencedirect.com/science/article/pii/S004316481000373X
|
[58] |
TAHERI M, AHMADIAN M. Machine learning from computer simulations with applications in rail vehicle dynamics[J]. Vehicle System Dynamics, 2016, 54(5): 653-666. doi: 10.1080/00423114.2016.1150497
|
[59] |
DONG Shao-di, TANG Zhao, YANG Xiao-song, et al. Nonlinear spring-mass-damper modeling and parameter estimation of train frontal crash using CLGAN model[J]. Shock and Vibration, 2020, 2020: 1-19. http://www.researchgate.net/publication/344006292_Nonlinear_Spring-Mass-Damper_Modeling_and_Parameter_Estimation_of_Train_Frontal_Crash_Using_CLGAN_Model
|
[60] |
彭丽宇, 张进川, 苟娟琼, 等. 基于BP神经网络的铁路轨道几何不平顺预测方法[J]. 铁道学报, 2018, 40(9): 154-158. doi: 10.3969/j.issn.1001-8360.2018.09.021
PENG Li-yu, ZHANG Jin-chuan, GOU Juan-qiong, et al. Prediction method of railway track geometric irregularity based on bp neural network[J]. Journal of the China Railway Society, 2018, 40(9): 154-158. (in Chinese) doi: 10.3969/j.issn.1001-8360.2018.09.021
|
[61] |
LIU Song, PANG Xue-miao, JI Hai-yan, et al. Prediction of track irregularities using NARX neural network[C]//IEEE. 2010 Second Pacific-Asia Conference on Circuits, Communications and System (PACCS). New York: IEEE, 2010: 109-112.
|
[62] |
于瑶, 刘仍奎, 王福田. 基于支持向量机的轨道不平顺预测研究[J]. 铁道科学与工程学报, 2018, 15(7): 1671-1677. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201807006.htm
YU Yao, LIU Reng-kui, WANG Fu-tian. Prediction for track irregularity based on support vector machine[J]. Journal of Railway Science and Engineering, 2018, 15(7): 1671-1677. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201807006.htm
|
[63] |
韩晋, 杨岳, 陈峰, 等. 基于非等时距加权灰色模型与神经网络的轨道不平顺预测[J]. 铁道学报, 2014, 36(1): 81-87. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201401016.htm
HAN Jin, YANG Xue, CHEN Feng, et al. Prediction of track irregularity based on non-equal interval weighted grey model and neural network[J]. Journal of the China Railway Society, 2014, 36(1): 81-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201401016.htm
|
[64] |
KRAFT S, CAUSSE J, MARTINEZ A. Black-box modelling of nonlinear railway vehicle dynamics for track geometry assessment using neural networks[J]. Vehicle System Dynamics, 2018, 57(9): 1241-1270. doi: 10.1080/00423114.2018.1497186
|
[65] |
ZHENG Shu-bin, ZHONG Qian-wen, CHAI Xiao-dong, et al. A novel prediction model for car body vibration acceleration based on correlation analysis and neural networks[J]. Journal of Advanced Transportation, 2018, 2018: 1-13. http://www.researchgate.net/publication/329969104_A_Novel_Prediction_Model_for_Car_Body_Vibration_Acceleration_Based_on_Correlation_Analysis_and_Neural_Networks
|
[66] |
SHAFIULLAH G M, ALI A B M S, THOMPSON A, et al. Predicting vertical acceleration of railway wagons using regression algorithms[J]. IEEE Transactions on Intelligent Transportation Systems, 2010, 11(2): 290-299. doi: 10.1109/TITS.2010.2041057
|
[67] |
KUN Qian, JIE Liang, GAO Yin-han. The prediction of vibration and noise for the high-speed train based on neural network and boundary element method[J]. Journal of Vibroengineering, 2015, 17(8): 1-13. http://www.researchgate.net/publication/292816535_The_prediction_of_vibration_and_noise_for_the_high-speed_train_based_on_neural_network_and_boundary_element_method/download
|
[68] |
TIMOTHY P, MARTIN K, ALI T. Using a multibody dynamic simulation code with neural network technology to predict railroad vehicle-track interaction performance in real time[C]//IEEE. 6th International Conference on Multibody Systems, Nonlinear Dynamics and Control. New York: IEEE, 2007: 1881-1891.
|
[69] |
SHEBANI A, IWNICKI S. Prediction of wheel and rail wear under different contact conditions using artificial neural networks[J]. Wear, 2018, 406/407: 173-184. doi: 10.1016/j.wear.2018.01.007
|
[70] |
ZENG Yuan-chen, ZHANG Wei-hua, SONG Dong-li, et al. Response prediction of stochastic dynamics by neural networks: theory and application on railway vehicles[J]. Computing in Science and Engineering, 2019, 21(3): 18-30. doi: 10.1109/MCSE.2018.2882328
|
[71] |
KIM Y, PARK C, HWANG H. Design optimization for suspension system of high speed train using neural network[J]. JSME International Journal, 2003, 46(2): 727-734. doi: 10.1299/jsmec.46.727
|
[72] |
JIANG Han-wen, GAO Liang. Optimizing the rail profile for high-speed railways based on artificial neural network and genetic algorithm coupled method[J]. Sustainability, 2020, 12(2): 1-23. http://www.researchgate.net/publication/338652874_Optimizing_the_Rail_Profile_for_High-Speed_Railways_Based_on_Artificial_Neural_Network_and_Genetic_Algorithm_Coupled_Method
|
[73] |
MARZBANRAD J, EBRAHIMI M R. Multi-objective optimization of aluminum hollow tubes for vehicle crash energy absorption using a genetic algorithm and neural networks[J]. Thin-Walled Structures, 2011, 49(12): 1605-1615. doi: 10.1016/j.tws.2011.08.009
|
[74] |
KUMAR P S, SIVAKUMAR K, KANAGARAJAN R, et al. Adaptive neuro fuzzy inference system control of active suspension system with actuator dynamics[J]. Journal of Vibroengineering, 2018, 20(1): 541-549. doi: 10.21595/jve.2017.18379
|
[75] |
CHOROMAŃSKI W. Application of neural network for intelligent wheelset and railway vehicle suspension designs[J]. Vehicle System Dynamics, 1996, 25(1): 87-98. doi: 10.1080/00423119608969189
|
[76] |
丁问司, 卜继玲. 基于非线性神经网络的列车半主动悬挂系统[J]. 华南理工大学学报(自然科学版), 2005, 33(12): 75-77, 91. doi: 10.3321/j.issn:1000-565X.2005.12.017
DING Wen-si, BU Ji-ling. Semi-active suspension system of train based on nonlinear neural networks[J]. Journal of South China University of Technology (Natural Science Edition), 2005, 33(12): 75-77, 91. (in Chinese) doi: 10.3321/j.issn:1000-565X.2005.12.017
|
[77] |
TUDÓN-MARTÍNEZ J C, LOZOYA-SANTOS J J, MORALES-MENENDEZ R, et al. An experimental artificial-neural-network-based modeling of magneto-rheological fluid dampers[J]. Smart Materials and Structures, 2012, 21(8): 1-16. http://www.ingentaconnect.com/content/iop/sms/2012/00000021/00000008/art085007
|