Citation: | MIAO Bing-rong, LIU Jun-li, ZHANG Ying, YANG Shu-wang, PENG Qi-ming, LUO Yao-xiang. Review on structural vibration damage identification technology for railway vehicles[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 338-357. doi: 10.19818/j.cnki.1671-1637.2021.01.016 |
[1] |
SINOU J J. A review of damage detection and health monitoring of mechanical systems from changes in the measurement of linear and non-linear vibrations[M]//VERICHEVN N, VERICHEVS N. Mechanical Vibrations: Measurement, Effects and Control. New York: Nova Science Publishers, 2009: 643-702.
|
[2] |
CARDEN E P, FANNING P. Vibration based condition monitoring: a review[J]. Structural Health Monitoring, 2004, 3(4): 355-377. doi: 10.1177/1475921704047500
|
[3] |
FARRAR C R, WORDEN K. An introduction to structural health monitoring[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1851): 303-315. doi: 10.1098/rsta.2006.1928
|
[4] |
DAS S, SAHA P, PATRO S K. Vibration-based damage detection techniques used for health monitoring of structures: a review[J]. Journal of Civil Structural Health Monitoring, 2016, 6(3): 477-507. doi: 10.1007/s13349-016-0168-5
|
[5] |
CAWLEY P R, ADAMS D. The location of defects in structures from measurements of natural frequencies[J]. Journal of Strain Analysis for Engineering Design, 1979, 14(2): 49-57. doi: 10.1243/03093247V142049
|
[6] |
RYTTER A. Vibration based inspection of civil engineering structures[D]. Aalborg: Aalborg University, 1993.
|
[7] |
DOEBLING S W, FARRAR C R, PRIME M B, et al. Damage identification and health monitoring of structural and mechanical systems from change in their vibration characteristics: a literature review[J]. The Shock and Vibration Digest, 1996, 30(11): 2043-2049. http://digital.library.unt.edu/ark:/67531/metadc663932/
|
[8] |
FAN Wei, QIAO Pi-zhong. Vibration-based damage identification methods: a review and comparative study[J]. Structural Health Monitoring, 2011, 10(1): 83-111. doi: 10.1177/1475921710365419
|
[9] |
JASSIM Z A, ALI N, MUSTAPHA F, et al. A review on the vibration analysis for a damage occurrence of a cantilever beam[J]. Engineering Failure Analysis, 2013, 31: 442-461. doi: 10.1016/j.engfailanal.2013.02.016
|
[10] |
KONG Xuan, CAI Chun-sheng, HU Jie-xuan. The state-of-the-art on framework of vibration-based structural damage identification for decision making[J]. Applied Sciences, 2017, 7(5): 497. doi: 10.3390/app7050497
|
[11] |
BURGOS D A T, VARGAS R C G, PEDRAZA C, et al. Damage identification in structural health monitoring: a brief review from its implementation to the use of data-driven applications[J]. Sensors, 2020, 20(3): 733. doi: 10.3390/s20030733
|
[12] |
ONUR A, OSAMA A, SERKAN K, et al. A review of vibration-based damage detection in civil structures: from traditional methods to machine learning and deep learning applications[J]. Mechanical Systems and Signal Processing, 2021, 147: 107077. doi: 10.1016/j.ymssp.2020.107077
|
[13] |
YOKOYAMA A. Innovative changes for maintenance of railway by using ICT—to achieve "smart maintenance"[J]. Procedia CIRP, 2015, 38: 24-29. doi: 10.1016/j.procir.2015.07.074
|
[14] |
WANG Shu-qing, XU Ming-qiang. Modal strain energy-based structural damage identification: a review and comparative study[J]. Structural Engineering International, 2019: 29(2): 234-248. doi: 10.1080/10168664.2018.1507607
|
[15] |
GOMES G F, DIAZ MENDEZ Y A, LOPES ALEXANDRINO P D S, et al. A review of vibration based inverse methods for damage detection and identification in mechanical structures using optimization algorithms and ANN[J]. Archives of Computational Methods in Engineering, 2019, 26(4): 883-897. doi: 10.1007/s11831-018-9273-4
|
[16] |
LEE Y S, CHUNG M J. A study on crack detection using eigen frequency test data[J]. Computers and Structures, 2000, 77(3): 327-342. doi: 10.1016/S0045-7949(99)00194-7
|
[17] |
PAN Jing-wen, ZHANG Zhi-fang, WU Jiu-rong, et al. A novel method of vibration modes selection for improving accuracy of frequency-based damage detection[J]. Composites Part B: Engineering, 2019, 159: 437-446. doi: 10.1016/j.compositesb.2018.08.134
|
[18] |
DAHAK M, TOUAT N, KHAROUBI M. Damage detection in beam through change in measured frequency and undamaged curvature mode shape[J]. Inverse Problems in Science and Engineering, 2019, 27(1): 89-114. doi: 10.1080/17415977.2018.1442834
|
[19] |
SHI Bin-kai, QIAO Pi-zhong. A new surface fractal dimension for displacement mode shape-based damage identification of plate-type structures[J]. Mechanical Systems and Signal Processing, 2018, 103: 139-161. doi: 10.1016/j.ymssp.2017.09.033
|
[20] |
ZHAO Ying, NOORI M, ALTABEY W A, et al. Mode shape- based damage identification for a reinforced concrete beam using wavelet coefficient differences and multiresolution analysis[J]. Structural Control and Health Monitoring, 2018, 25(1): e2041. doi: 10.1002/stc.2041
|
[21] |
XU Y F, ZHU W D, LIU J, et al. Identification of embedded horizontal cracks in beams using measured mode shapes[J]. Journal of Sound and Vibration, 2014, 333(23): 6273-6294. doi: 10.1016/j.jsv.2014.04.046
|
[22] |
JANELIUKSTIS R, RUCEVSKIS S, WESOLOWSKI M, et al. Experimental structural damage localization in beam structure using spatial continuous wavelet transform and mode shape curvature methods[J]. Measurement, 2017, 102: 253-270. doi: 10.1016/j.measurement.2017.02.005
|
[23] |
NAVABIAN N, BOZORGNASAB M, TAGHIPOUR R, et al. Damage identification in plate-like structure using mode shape derivatives[J]. Archive of Applied Mechanics, 2016, 86(5): 819-830. doi: 10.1007/s00419-015-1064-x
|
[24] |
RUCEVSKIS S, JANELIUKSTIS R, AKISHIN P, et al. Mode shape-based damage detection in plate structure without baseline data[J]. Structural Control and Health Monitoring, 2016, 23(9): 1180-1193. doi: 10.1002/stc.1838
|
[25] |
YANG Hui-chao, XU Fei-yun, MA Jia-xin, et al. Strain modal-based damage identification method and its application to crane girder without original model[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(4): 1299-1311. doi: 10.1177/0954406218769924
|
[26] |
周计祥, 吴邵庆, 董萼良, 等. 基于应变模态的模态应变能损伤识别方法[J]. 振动测试与诊断, 2019, 39(1): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201901005.htm
ZHOU Ji-xiang, WU Shao-qing, DONG E-liang, et al. Damage identification based on modal strain energy formulated by strain models[J]. Journal of Vibration, Measurement and Diagnosis, 2019, 39(1): 25-31. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201901005.htm
|
[27] |
AHMAD S, WALEED A, VIRK U S, et al. Multiple damage detections in plate-like structures using curvature mode shapes and gapped smoothing method[J]. Advances in Mechanical Engineering, 2019, 11(5): 1687814019848921. http://www.researchgate.net/publication/332917879_Multiple_damage_detections_in_plate-like_structures_using_curvature_mode_shapes_and_gapped_smoothing_method/download
|
[28] |
ZHONG Hai, YANG Mi-jia. Damage detection for plate-like structures using generalized curvature mode shape method[J]. Journal of Civil Structural Health Monitoring, 2016, 6(1): 141-152. doi: 10.1007/s13349-015-0148-1
|
[29] |
BAGHERKHANI A, BAGHLANI A. Enhancing the curvature mode shape method for structural damage severity estimation by means of the distributed genetic algorithm[J]. Engineering Optimization, 2021, 53(4): 683-701. doi: 10.1080/0305215X.2020.1746294
|
[30] |
吴多, 刘来君, 张筱雨, 等. 基于曲率模态曲线变化的桥梁损伤识别[J]. 建筑科学与工程学报, 2018, 35(2): 119-126. doi: 10.3969/j.issn.1673-2049.2018.02.017
WU Duo, LIU Lai-jun, ZHANG Xiao-yu, et al. Bridge damage identification based on curvature mode curve[J]. Journal of Architecture and Civil Engineering, 2018, 35(2): 119-126. (in Chinese) doi: 10.3969/j.issn.1673-2049.2018.02.017
|
[31] |
XU Y F, ZHU W D, SMITH S A. Non-model-based damage identification of plates using principal, mean and Gaussian curvature mode shapes[J]. Journal of Sound and Vibration, 2017, 400: 626-659. doi: 10.1016/j.jsv.2017.03.030
|
[32] |
DANIELE D, GABRIELE C. Damage identification techniques via modal curvature analysis: overview and comparison[J]. Mechanical Systems and Signal Processing, 2015, 52: 181-205. http://www.sciencedirect.com/science/article/pii/S0888327014002076
|
[33] |
SEYEDPOOR S M. A two stage method for structural damage detection using a modal strain energy based index and particle swarm optimization[J]. International Journal of Non-Linear Mechanics, 2012, 47(1): 1-8. doi: 10.1016/j.ijnonlinmec.2011.07.011
|
[34] |
LALE AREFI S, GHOLIZAD A, SEYEDPOOR S M. Damage detection of structures using modal strain energy with Guyan reduction method[J]. Journal of Rehabilitation in Civil Engineering, 2020, 8(4): 47-60. http://www.researchgate.net/publication/350609584_Damage_Detection_of_Structures_Using_Modal_Strain_Energy_with_Guyan_Reduction_Method
|
[35] |
VO-DUY T, HO-HUU V, DANG-TRUNG H, et al. A two- step approach for damage detection in laminated composite structures using modal strain energy method and an improved differential evolution algorithm[J]. Composite Structures, 2016, 147: 42-53. doi: 10.1016/j.compstruct.2016.03.027
|
[36] |
VO-DUY T, HO-HUU V, DANG-TRUNG H, et al. Damage detection in laminated composite plates using modal strain energy and improved differential evolution algorithm[J]. Procedia Engineering, 2016, 142: 181-188. http://www.sciencedirect.com/science/article/pii/S1877705816003945
|
[37] |
刘文光, 颜龙, 郭隆清. 基于模态应变能法的弹性薄板损伤识别[J]. 噪声与振动控制, 2016, 36(3): 164-168. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201603035.htm
LIU Wen-guang, YAN Long, GUO Long-qing. Damage identification of elastic thin plates by modal strain[J]. Noise and Vibration Control, 2016, 36(3): 164-168. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK201603035.htm
|
[38] |
梁振彬. 基于模态应变能的结构损伤识别方法研究[D]. 北京: 清华大学, 2017.
LIANG Zhen-bin. Study on damage detection of structures based on modal strain energy[D]. Beijing: Tsinghua University, 2017. (in Chinese).
|
[39] |
卫军, 杜永潇, 吴志强, 等. 基于模态应变能和Bayes理论的梁结构损伤识别[J]. 铁道科学与工程学报, 2019, 16(8): 2052-2061. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201908023.htm
WEI Jun, DU Yong-xiao, WU Zhi-qiang, et al. Damage identification of beam structures based on modal strain energy and Bayesian data fusion theory[J]. Journal of Railway Science and Engineering, 2019, 16(8): 2052-2061. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201908023.htm
|
[40] |
FU Y Z, LIU J K, WEI Z T, et al. A two-step approach for damage identification in plates[J]. Journal of Vibration and Control, 2016, 22(13): 3018-3031. doi: 10.1177/1077546314557689
|
[41] |
WEI Z T, LIU J K, LU Z R. Damage identification in plates based on the ratio of modal strain energy change and sensitivity analysis[J]. Inverse Problems in Science and Engineering, 2016, 24(2): 265-283. doi: 10.1080/17415977.2015.1017489
|
[42] |
SHA Gang-gang, RADZIENSKI M, SOMAN R, et al. Multiple damage detection in laminated composite beams by data fusion of Teager energy operator-wavelet transform mode shapes[J]. Composite Structures, 2020, 235: 111798. doi: 10.1016/j.compstruct.2019.111798
|
[43] |
MARDASI A G, WU N, WU C. Experimental study on the crack detection with optimized spatial wavelet analysis and windowing[J]. Mechanical Systems and Signal Processing, 2018, 104: 619-630. doi: 10.1016/j.ymssp.2017.11.039
|
[44] |
SERRA R, LOPEZ L. Damage detection methodology on beam- like structures based on combined modal wavelet transform strategy[J]. Mechanics and Industry, 2017, 18(8): 807. doi: 10.1051/meca/2018007
|
[45] |
YANG Chen, OYADIJI S O. Damage detection using modal frequency curve and squared residual wavelet coefficients-based damage indicator[J]. Mechanical Systems and Signal Processing, 2017, 83: 385-405. doi: 10.1016/j.ymssp.2016.06.021
|
[46] |
JANELIUKSTIS R, RUCEVSKIS S, WESOLOWSKI M, et al. Multiple damage identification in beam structure based on wavelet transform[J]. Procedia Engineering, 2017, 172: 426-432. doi: 10.1016/j.proeng.2017.02.023
|
[47] |
KATUNIN A. Vibration-based spatial damage identification in honeycomb-core sandwich composite structures using wavelet analysis[J]. Composite Structures, 2014, 118: 385-391. doi: 10.1016/j.compstruct.2014.08.010
|
[48] |
KATUNIN A. Damage identification based on stationary wavelet transform of modal data[J]. Modelowanie
|
[49] |
ZHANG X, CHEN R, ZHOU Q. Damage identification using wavelet packet transform and neural network ensembles[J]. International Journal of Structural Stability and Dynamics, 2018, 18(12): 1850148. doi: 10.1142/S0219455418501481
|
[50] |
ZHANG Xing-wu, GAO R X, YAN Ru-qiang, et al. Multivariable wavelet finite element-based vibration model for quantitative crack identification by using particle swarm optimization[J]. Journal of Sound and Vibration, 2016, 375: 200-216. doi: 10.1016/j.jsv.2016.04.018
|
[51] |
缪炳荣, 杨树旺, 王名月, 等. 利用振动响应的多种结构损伤识别方法比较[J]. 振动工程学报, 2020, 33(4): 724-733. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC202004010.htm
MIAO Bing-rong, YANG Shu-wang, WANG Ming-yue, et al. Comparison of various structural damage identification methods using vibration response[J]. Journal of Vibration Engineering, 2020, 33(4): 724-733. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC202004010.htm
|
[52] |
李旭娟, 缪炳荣, 史艳民, 等. 基于小波方法的板结构损伤识别研究[J]. 机械强度, 2018, 40(1): 177-182. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201801030.htm
LI Xu-juan, MIAO Bing-rong, SHI Yan-min, et al. Damage identification study of plate structures based on wavelet method[J]. Journal of Mechanical Strength, 2018, 40(1): 177-182. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD201801030.htm
|
[53] |
王名月, 缪炳荣, 李旭娟, 等. 基于转角模态和小波神经网络的连续梁损伤识别研究[J]. 力学季刊, 2016, 37(4): 684-691. https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201604008.htm
WANG Ming-yue, MIAO Bing-rong, LI Xu-juan, et al. Damage identification of continuous beam based on rotation mode and wavelet neural network[J]. Chinese Quarterly of Mechanics, 2016, 37(4): 684-691. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-SHLX201604008.htm
|
[54] |
杨树旺. 基于振动响应与优化技术的结构损伤识别研究[D]. 成都: 西南交通大学, 2020.
YANG Shu-wang. Research on structural damage identification based on vibration and optimization technology[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese).
|
[55] |
WEI Zi-tian, LIU Ji-ke, LU Zhong-rong. Structural damage detection using improved particle swarm optimization[J]. Inverse Problems in Science and Engineering, 2018, 26(6): 792-810. doi: 10.1080/17415977.2017.1347168
|
[56] |
KHATIR S, BELAIDI I, KHATIR T, et al. Multiple damage detection in unidirectional graphite-epoxy composite beams using particle swarm optimization and genetic algorithm[J]. Mechanika, 2017, 23(4): 514-521. http://www.researchgate.net/publication/319531835_Multiple_damage_detection_in_unidirectional_graphite-epoxy_composite_beams_using_particle_swarm_optimization_and_genetic_algorithm
|
[57] |
KHATIR S, WAHAB M A, BOUTCHICHA D, et al. Structural health monitoring using modal strain energy damage indicator coupled with teaching-learning-based optimization algorithm and isogoemetric analysis[J]. Journal of Sound and Vibration, 2019, 448: 230-246. doi: 10.1016/j.jsv.2019.02.017
|
[58] |
SEYEDPOOR S M, AHMADI A, PAHNABI N. Structural damage detection using time domain responses and an optimization method[J]. Inverse Problems in Science and Engineering, 2019, 27(5): 669-688. doi: 10.1080/17415977.2018.1505884
|
[59] |
DING Z H, HUANG M, LU Z R. Structural damage detection using artificial bee colony algorithm with hybrid search strategy[J]. Swarm and Evolutionary Computation, 2016, 28: 1-13. doi: 10.1016/j.swevo.2015.10.010
|
[60] |
ZHANG Chao-dong, XU You-lin. Multi-level damage identification with response reconstruction[J]. Mechanical Systems and Signal Processing, 2017, 95: 42-57. doi: 10.1016/j.ymssp.2017.03.029
|
[61] |
GENG Xiang-yi, LU Shi-zeng, JIANG Ming-shun, et al. Research on FBG-based CFRP structural damage identification using BP neural network[J]. Photonic Sensors, 2018, 8(2): 168-175. doi: 10.1007/s13320-018-0466-0
|
[62] |
ASHORY M R, GHASEMI-GHALEBAHMAN A, KOKABI M J. An efficient modal strain energy-based damage detection for laminated composite plates[J]. Advanced Composite Materials, 2018, 27(2): 147-162. doi: 10.1080/09243046.2017.1301069
|
[63] |
GHASEMI M R, NOBAHARI M, SHABAKHTY N. Enhanced optimization-based structural damage detection method using modal strain energy and modal frequencies[J]. Engineering with Computers, 2018, 34(3): 637-647. doi: 10.1007/s00366-017-0563-5
|
[64] |
LOPES ALEXANDRINO P S L, GOMES G F, CUNHA JR S S. A robust optimization for damage detection using multiobjective genetic algorithm, neural network and fuzzy decision making[J]. Inverse Problems in Science and Engineering, 2020, 28(1): 21-46. doi: 10.1080/17415977.2019.1583225
|
[65] |
KHATIR S, BELAIDI I, KHATIR T, et al. Multiple damage detection in composite beams using particle swarm optimization and genetic algorithm[J]. Mechanics, 2017, 23(4): 514-521. http://www.researchgate.net/publication/319531835_Multiple_damage_detection_in_unidirectional_graphite-epoxy_composite_beams_using_particle_swarm_optimization_and_genetic_algorithm
|
[66] |
HOU Rong-rong, XIA Yong, XIA Qi, et al. Genetic algorithm based optimal sensor placement for L1-regularized damage detection[J]. Structural Control and Health Monitoring, 2019, 26(1): e2274. doi: 10.1002/stc.2274
|
[67] |
SEYEDPOOR S M, NOPOUR M H. A two-step method for damage identification in moment frame connections using support vector machine and differential evolution algorithm[J]. Applied Soft Computing, 2020, 88: 106008. doi: 10.1016/j.asoc.2019.106008
|
[68] |
GUEDRIA N B. An accelerated differential evolution algorithm with new operators for multi-damage detection in plate-like structures[J]. Applied Mathematical Modelling, 2020, 80: 366-383. doi: 10.1016/j.apm.2019.11.023
|
[69] |
DU D C, VINH H, TRUNG V D, et al. Efficiency of Jaya algorithm for solving the optimization-based structural damage identification problem based on a hybrid objective function[J]. Engineering Optimization, 2018, 50(8): 1233-1251. doi: 10.1080/0305215X.2017.1367392
|
[70] |
XU H J, LIU J K, LU Z R. Structural damage identification based on cuckoo search algorithm[J]. Advances in Structural Engineering, 2016, 19(5): 849-859. doi: 10.1177/1369433216630128
|
[71] |
MISHRA M, BARMAN S K, MAITY D, et al. Ant lion optimisation algorithm for structural damage detection using vibration data[J]. Journal of Civil Structural Health Monitoring, 2019, 9(1): 117-136. doi: 10.1007/s13349-018-0318-z
|
[72] |
CHEN Ze-peng, YU Ling. A new structural damage detection strategy of hybrid PSO with Monte Carlo simulations and experimental verifications[J]. Measurement, 2018, 122: 658-669. doi: 10.1016/j.measurement.2018.01.068
|
[73] |
AN Yong-hui, CHATZI E, SIM Sung-han, et al. Recent progress and future trends on damage identification methods for bridge structures[J]. Structural Control and Health Monitoring, 2019, 26(10): e2416. doi: 10.1002/stc.2416
|
[74] |
XING Shu-tao. Structural identification and damage identification using output-only vibration measurements[D]. Logan: Utah State University, 2011.
|
[75] |
ABDELJABER O, AVCI O, KIRANYAZ S, et al. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks[J]. Journal of Sound and Vibration, 2017, 388: 154-170. doi: 10.1016/j.jsv.2016.10.043
|
[76] |
TENG Z, TENG S, ZHANG J, et al. Structural damage detection based on real-time vibration signal and convolutional neural network[J]. Applied Sciences, 2020, 10(14): 4720. doi: 10.3390/app10144720
|
[77] |
AZAMI M, SALEHI M. Response-based multiple structural damage localization through multi-channel empirical mode decomposition[J]. Journal of Structural Integrity and Maintenance, 2019, 4(4): 195-206. doi: 10.1080/24705314.2019.1657616
|
[78] |
YE X W, JIN T, YUN C B. A review on deep learning-based structural health monitoring of civil infrastructures[J]. Smart Structures and Systems, 2019, 24(5): 567-585.
|
[79] |
WANG Jia-lai, QIAO Pi-zhong. Improved damage detection for beam-type structures using a uniform load surface[J]. Structural Health Monitoring, 2007, 6(2): 99-110. doi: 10.1177/1475921706072062
|
[80] |
BANDARA R P, CHAN T H T, THAMBIRATNAM D P. Structural damage detection method using frequency response functions[J]. Structural Health Monitoring, 2014, 13(4): 418-429. doi: 10.1177/1475921714522847
|
[81] |
COMANDUCCI G, MAGALHÃES F, UBERTINI F, et al. On vibration-based damage detection by multivariate statistical techniques: application to a long-span arch bridge[J]. Structural Health Monitoring, 2016, 15(5): 505-524. doi: 10.1177/1475921716650630
|
[82] |
GHADIMI S, KOUREHLI S S. Multiple crack identification in Euler beams using extreme learning machine[J]. KSCE Journal of Civil Engineering, 2017, 21(1): 389-396. doi: 10.1007/s12205-016-1078-0
|
[83] |
GRES S, ULRIKSEN M D, DÖHLER M, et al. Statistical methods for damage detection applied to civil structures[J]. Procedia Engineering, 2017, 199: 1919-1924. doi: 10.1016/j.proeng.2017.09.280
|
[84] |
HUANG N E, SHEN S S P. Hilbert-Huang Transform and its Applications[M]. Singapore: World Scientific, 2014.
|
[85] |
WORDEN K, MANSON G. The application of machine learning to structural health monitoring[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2007, 365(1851): 515-537. doi: 10.1098/rsta.2006.1938
|
[86] |
GUI Guo-qing, PAN Hong, LIN Zhi-bin, et al. Data-driven support vector machine with optimization techniques for structural health monitoring and damage detection[J]. KSCE Journal of Civil Engineering, 2017, 21(2): 523-534. doi: 10.1007/s12205-017-1518-5
|
[87] |
PAN Hong, AZIMI M, LIN Zhi-bin, et al. Time-frequency-based data-driven structural diagnosis and damage detection for cable-stayed bridges[J]. Journal of Bridge Engineering, 2018, 23(6): 04018033. doi: 10.1061/(ASCE)BE.1943-5592.0001199
|
[88] |
SALEHI H, BISWAS S, BURGUEÑO R. Data interpretation framework integrating machine learning and pattern recognition for self-powered data-driven damage identification with harvested energy variations[J]. Engineering Applications of Artificial Intelligence, 2019, 86: 136-153. doi: 10.1016/j.engappai.2019.08.004
|
[89] |
VITOLA J, VEJAR M A, BURGOS D A T, et al. Data-driven methodologies for structural damage detection based on machine learning applications[M]//RAMAKRISHNAN S. Pattern Recognition Analysis and Applications. London: INTECH Open Science, 2016: 109-126.
|
[90] |
NGIGI R W, PISLARU C, BALL A, et al. Modern techniques for condition monitoring of railway vehicle dynamics[J]. Journal of Physics, 2012, 364(1): 012016. http://www.ingentaconnect.com/content/iop/jpcs/2012/00000364/00000001/art012016
|
[91] |
TAKIKAWA M. Innovation in railway maintenance utilizing information and communication technology (smart maintenance initiative)[J]. Japan Railway and Transport Review, 2016(67): 22-35. http://trid.trb.org/view/1402702
|
[92] |
HUANG Zheng. Integrated railway remote condition monitoring[D]. Birmingham: University of Birmingham, 2017.
|
[93] |
AZIM M R, GVL M. Damage detection of steel girder railway bridges utilizing operational vibration response[J]. Structural Control and Health Monitoring, 2019, 26(11): e2447. doi: 10.1002/stc.2447
|
[94] |
NEVES C. Structural health monitoring of bridges: model-free damage detection method using machine learning[D]. Stockholm: KTH Royal Institute of Technology, 2017.
|
[95] |
GEORGE R C, POSEY J, GUPTA A, et al. Damage detection in railway bridges under moving train load[J]. Model Validation and Uncertainty Quantification, 2017, 3: 349-354. doi: 10.1007/978-3-319-54858-6_35
|
[96] |
ALVES V N, DE OLIVEIRA M M, RIBEIRO D, et al. Model- based damage identification of railway bridges using genetic algorithms[J]. Engineering Failure Analysis, 2020, 118: 104845. doi: 10.1016/j.engfailanal.2020.104845
|
[97] |
ZHAN J W, XIA H, CHEN S Y, et al. Structural damage identification for railway bridges based on train-induced bridge responses and sensitivity analysis[J]. Journal of Sound and Vibration, 2011, 330(4): 757-770. doi: 10.1016/j.jsv.2010.08.031
|
[98] |
NGAMKHANONG C, KAEWUNRUEN S, COSTA B J A. State-of-the-art review of railway track resilience monitoring[J]. Infrastructures, 2018, 3(1): 3. doi: 10.3390/infrastructures3010003
|
[99] |
CHUDZIKIEWICZ A, BOGACZ R, KOSTRZEWSKI M, et al. Condition monitoring of railway track systems by using acceleration signals on wheelset axle-boxes[J]. Transport, 2018, 33(2): 555-566. doi: 10.3846/16484142.2017.1342101
|
[100] |
OREGUI M, LI Z, DOLLEVOET R. Identification of characteristic frequencies of damaged railway tracks using field hammer test measurements[J]. Mechanical Systems and Signal Processing, 2015, 54: 224-242. http://smartsearch.nstl.gov.cn/paper_detail.html?id=eb67a6be1236b027655a968706f83269
|
[101] |
TAO Gong-quan, WEN Ze-feng, JIN Xue-song, et al. Polygonisation of railway wheels: a critical review[J]. Railway Engineering Science, 2020, 28(3): 1-29. doi: 10.1007/s40534-020-00222-x/figures/23
|
[102] |
CANTERO D, BASU B. Railway infrastructure damage detection using wavelet transformed acceleration response of traversing vehicle[J]. Structural Control and Health Monitoring, 2015, 22(1): 62-70. doi: 10.1002/stc.1660
|
[103] |
WANG Long-qi, ZHANG Yao, LIE S T. Detection of damaged supports under railway track based on frequency shift[J]. Journal of Sound and Vibration, 2017, 392: 142-153. doi: 10.1016/j.jsv.2016.11.018
|
[104] |
BARKE D, CHIU W K. Structural health monitoring in the railway industry: a review[J]. Structural Health Monitoring, 2005, 4(1): 81-93. doi: 10.1177/1475921705049764
|
[105] |
CHONG S Y, LEE J R, SHIN H S. A review of health and operation monitoring technologies for trains[J]. Smart Structures and Systems, 2010, 6(9): 1079-1105. doi: 10.12989/sss.2010.6.9.1079
|
[106] |
ALEMI A, CORMAN F, LODEWIJKS G. Condition monitoring approaches for the detection of railway wheel defects[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2017, 231(8): 961-981. doi: 10.1177/0954409716656218
|
[107] |
ALEMI A. Railway wheel defect identification[D]. Delft: Delft University of Technology, 2019.
|
[108] |
ALEMI A, CORMAN F, PANG Y, et al. Reconstruction of an informative railway wheel defect signal from wheel-rail contact signals measured by multiple wayside sensors[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233(1): 49-62. doi: 10.1177/0954409718784362
|
[109] |
LIANG B, IWNICKI S D, ZHAO Y, et al. Railway wheel-flat and rail surface defect modelling and analysis by time-frequency techniques[J]. Vehicle System Dynamics, 2013, 51(9): 1403-1421. doi: 10.1080/00423114.2013.804192
|
[110] |
LIU Xiao-zhou, NI Yi-qing. Wheel tread defect detection for high-speed trains using FBG-based online monitoring techniques[J]. Smart Structures and Systems, 2018, 21(5): 687-694. http://smartsearch.nstl.gov.cn/paper_detail.html?id=671acebe9d47517ff4140ecf05003166
|
[111] |
DU Cong, DUTTA S, KURUP P, et al. A review of railway infrastructure monitoring using fiber optic sensors[J]. Sensors and Actuators A: Physical, 2020, 303: 111728. doi: 10.1016/j.sna.2019.111728
|
[112] |
WEI Chu-liang, XIN Qin, CHUNG W H, et al. Real-time train wheel condition monitoring by fiber Bragg grating sensors[J]. International Journal of Distributed Sensor Networks, 2011, 8(1): 409048. http://www.oalib.com/paper/55817
|
[113] |
ROVERI N, CARCATERRA A, SESTIERI A. Integrated system for SHM and wear estimation of railway infrastructures[C]//University of Rome. 7th International Conference on Acoustical and Vibratory Surveillance Methods and Diagnostic Techniques. Rome: University of Rome, 2013: 1-19.
|
[114] |
KRAEMER P, FRIEDMANN H, RICHTER M. Vibration-based damage identification on the suspension of a railway wagon-findings from snap-back experiments with transient excitation[J]. International Journal of Rail Transportation, 2020, 8: 387-400. doi: 10.1080/23248378.2019.1675190
|
[115] |
梁建英. 高速列车智能诊断与故障预测技术研究[J]. 北京交通大学学报, 2019, 43(1): 63-70. doi: 10.11860/j.issn.1673-0291.2019.01.007
LIANG Jian-ying. Research on intelligent diagnosis and fault prediction technology for high speed trains[J]. Journal of Beijing Jiaotong University, 2019, 43(1): 63-70. (in Chinese). doi: 10.11860/j.issn.1673-0291.2019.01.007
|
[116] |
MAGEL E, KALOUSEK J. Designing and assessing wheel/rail profiles for improved rolling contact fatigue and wear performance[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2017, 231(7): 805-818. doi: 10.1177/0954409717708079
|
[117] |
BIELAK J, NOH H Y, LEDERMAN G, et al. Infrastructure monitoring from an in-service light rail vehicle[D]. Washington DC: U.S. Department of Transportation, 2016.
|
[118] |
VAICIUNAS G, BUREIKA G, STEISUNAS S. Rail vehicle axle-box bearing damage detection considering the intensity of heating alteration[J]. Eksploatacja i Niezawodnosc—Maintenance and Reliability, 2020, 22(4): 724-729. doi: 10.17531/ein.2020.4.16
|
[119] |
KUNDU P, DARPE A K, SINGH S P, et al. A review on condition monitoring technologies for railway rolling stock[C]// PHMS. Fourth European Conference of the Prognostics and Health Management Society. Utrecht: PHMS, 2018: 1-13.
|
[120] |
KUKENAS V, KHARITONOV B, LEVINZON M, et al. Improvement of diagnostic parameters of a rolling wheel with flat spot and experimental test on Lithuanian railways[J]. Applied Sciences, 2020, 10(20): 7148. doi: 10.3390/app10207148
|
[121] |
STEISUNAS S, BUREIKA G, VAICIUNAS G, et al. Estimation of ambient temperature impact on vertical dynamic behaviour of passenger rail vehicle with damaged wheels[J]. Journal of Mechanical Science and Technology, 2018, 32(11): 5179-5188. doi: 10.1007/s12206-018-1016-9
|
[122] |
WANG G, CAI G, YIN X. A study on detection technology of rail transit vehicle wheel web based on lamb wave[C]// Springer. International Conference on Electrical and Information Technologies for Rail Transportation. Berlin: Springer, 2019: 735-743.
|
[123] |
JESUSSEK M, ELLERMANN K. Fault detection and isolation for a full-scale railway vehicle suspension with multiple Kalman filters[J]. Vehicle System Dynamics, 2014, 52(12): 1695-1715. doi: 10.1080/00423114.2014.959026
|
[124] |
JESUSSEK M, ELLERMANN K. Fault detection and isolation for a nonlinear railway vehicle suspension with a hybrid extended Kalman filter[J]. Vehicle System Dynamics, 2013, 51(10): 1489-1501. doi: 10.1080/00423114.2013.810764
|
[125] |
SAKELLARIOU J S, PETSOUNIS K A, FASSOIS S D. Vibration based fault diagnosis for railway vehicle suspensions via a functional model based method: a feasibility study[J]. Journal of Mechanical Science and Technology, 2015, 29(2): 471-484. doi: 10.1007/s12206-015-0107-0
|
[126] |
LIU X Y, ALFI S, BRUNI S. An efficient recursive least square-based condition monitoring approach for a rail vehicle suspension system[J]. Vehicle System Dynamics, 2016, 54(6): 814-830. doi: 10.1080/00423114.2016.1164869
|
[127] |
JUNG H N, MVNKER T, KAMPMANN G, et al. A probabilistic approach for fault detection of railway suspensions[C]//Stanford University. Proceedings of International Conference on Structural Health Monitoring. Stanford: Stanford University, 2017: 11-13.
|
[128] |
WEI Xiu-kun, JIA Li-min, LIU Hai. A comparative study on fault detection methods of rail vehicle suspension systems based on acceleration measurements[J]. Vehicle System Dynamics, 2013, 51(5): 700-720. doi: 10.1080/00423114.2013.767464
|
[129] |
TSUNASHIMA H. Railway condition monitoring, present and application for regional railways[R]. Tokyo: Nihon University, 2017.
|
[130] |
LI Chun-sheng, LUO Shi-hui, COLE C, et al. An overview: modern techniques for railway vehicle on-board health monitoring systems[J]. Vehicle System Dynamics, 2017, 55(7): 1045-1070. doi: 10.1080/00423114.2017.1296963
|