Volume 21 Issue 3
Aug.  2021
Turn off MathJax
Article Contents
LIU Lin-ya, CUI Wei-tao, QIN Jia-liang, LIU Quan-min, SONG Li-zhong. Effects of rail pad viscoelasticity on vibration and structure-borne noise of railway box girder[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 134-145. doi: 10.19818/j.cnki.1671-1637.2021.03.007
Citation: LIU Lin-ya, CUI Wei-tao, QIN Jia-liang, LIU Quan-min, SONG Li-zhong. Effects of rail pad viscoelasticity on vibration and structure-borne noise of railway box girder[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 134-145. doi: 10.19818/j.cnki.1671-1637.2021.03.007

Effects of rail pad viscoelasticity on vibration and structure-borne noise of railway box girder

doi: 10.19818/j.cnki.1671-1637.2021.03.007
Funds:

National Natural Science Foundation of China 51968025

National Natural Science Foundation of China 52068030

National Natural Science Foundation of China 52008169

Natural Science Foundation of Jiangxi Province 20192ACBL20009

Science Foundation for Young Scholars of Jiangxi Province 20202BABL214048

Science and Technology Research Project of Jiangxi Education Department GJJ200658

More Information
  • Author Bio:

    LIU Lin-ya(1973-), male, professor, PhD, lly1949@163.com

  • Received Date: 2020-12-11
    Available Online: 2021-08-27
  • Publish Date: 2021-08-27
  • Taking the WJ-7B rail pad for high-speed railways as the research object, the dynamic properties of rail pad at different temperatures were tested through the dynamics mechanical property test, and the viscoelastic properties of rail pads were characterized by the temperature-frequency equivalent principle, Williams-Landel-Ferry (WLF) formula, and high-order fractional derivative fraction Voigt and Maxwell model in parallel (FVMP) model. The model was substituted into a finite element-boundary element model specially designed for the bridge vibration and structure-borne noise prediction, and the results were compared with those obtained through the Kelvin-Voigt (KV) model to analyze the effects of rail pad viscoelasticity on the box girder vibration and structure-borne noise. Research results show that the rail pad viscoelasticity is a temperature- and frequency-dependent dynamic parameter. The rail pad stiffness is positively correlated with the frequency and negatively correlated with the temperature, whereas the damping is negatively correlated with both the frequency and temperature. The damping changes significantly at frequencies within 1-100 Hz, but it varies slightly at frequencies above 100 Hz. The experimental dynamic parameters of rail pad are in good agreement with the high-order fractional derivative FVMP model fitting values. Therefore, the high-order fractional derivative FVMP model can accurately describe the dynamic viscoelastic behavior of rail pad under wide ranges of temperatures and frequencies. When only the frequency-dependent properties of rail pad are considered, the vibration of bridge intensifies at 25-63 Hz and weakens at 80-200 Hz. At the peak frequency of 63 Hz, the acceleration vibration levels of top plate, web, and bottom plate increase by 5.62, 0.91, and 2.94 dB, respectively. In the transverse direction of the bridge, the sound radiation increases obviously at the vertical near-field points of all bridge plates and near the ground under the bridge. When both the temperature- and frequency-dependent properties of rail pad are considered, as the temperature drops, the bridge vibration weakens continuously at 31.5-50.0 Hz and then intensifies progressively at 63-200 Hz. In the transverse direction of bridge, the sound radiation decreases diagonally above the top plate, at the vertical near-field points of web and bottom plate, and near the ground under the bridge. When the temperature drops from 20 ℃ to -20 ℃, the overall sound pressure level reduces by approximately 2 dB at most. Neglecting the rail pad viscoelasticity will lead to the deviations in the predictions of bridge vibration and structure-borne noise. The rail pad viscoelasticity should be considered in the simulation analysis to improve the prediction accuracy. 5 tabs, 15 figs, 31 refs.

     

  • loading
  • [1]
    LIU Quan-min, THOMPSON J, XU Pei-pei, et al. Investigation of train-induced vibration and noise from a steel-concrete composite railway bridge using a hybrid finite element-statistical energy analysis method[J]. Journal of Sound and Vibration, 2020, 471: 115197. doi: 10.1016/j.jsv.2020.115197
    [2]
    LI Qi, XU You-lin, WU Ding-jun. Concrete bridge-borne low-frequency noise simulation based on train-track-bridge dynamic interaction[J]. Journal of Sound and Vibration, 2012, 331(10): 2457-2470. doi: 10.1016/j.jsv.2011.12.031
    [3]
    LIU Lin-ya, ZUO Zhi-yuan, ZHOU Yun-lai, et al. Insights into the effect of WJ-7 fastener rubber pad to vehicle-rail-viaduct coupled dynamics[J]. Applied Sciences, 2020, 10(5): 1889. doi: 10.3390/app10051889
    [4]
    雷晓燕, 张新亚, 罗锟. 高架轨道桥梁结构振动与噪声预测方法及控制研究进展[J]. 铁道学报, 2020, 42(12): 150-161. doi: 10.3969/j.issn.1001-8360.2020.12.020

    LEI Xiao-yan, ZHANG Xin-ya, LUO Kun. Research progress on prediction methods and control of vibration and noise of elevated track bridge structure[J]. Journal of the China Railway Society, 2020, 42(12): 150-161. (in Chinese) doi: 10.3969/j.issn.1001-8360.2020.12.020
    [5]
    张天琦, 罗雁云, 周力. 腹板开孔对轨道交通箱梁振动噪声的影响[J]. 交通运输工程学报, 2019, 19(4): 35-46. doi: 10.3969/j.issn.1671-1637.2019.04.004

    ZHANG Tian-qi, LUO Yan-yun, ZHOU Li. Effect of web hole on vibration and noise of rail transit box girder[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 35-46. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.04.004
    [6]
    ROSSI L, PRATO A, LESINA L, et al. Effects of low- frequency noise on human cognitive performances in laboratory[J]. Building Acoustics, 2018, 25(1): 17-33. doi: 10.1177/1351010X18756800
    [7]
    SONG Li-zhong, LI Xiao-zhen, ZHENG Jing, et al. Vibro-acoustic analysis of a rail transit continuous rigid frame box girder bridge based on a hybrid WFE-2D BE method[J]. Applied Acoustics, 2020, 157: 107028. doi: 10.1016/j.apacoust.2019.107028
    [8]
    刘林芽, 秦佳良, 雷晓燕, 等. 基于响应面法的槽形梁结构噪声优化研究[J]. 振动与冲击, 2018, 37(20): 56-60, 80. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201820009.htm

    LIU Lin-ya, QIN Jia-liang, LEI Xiao-yan, et al. A study on optimization of the structure-borne noise from a trough girder based on response surface methodology[J]. Journal of Vibration and Shock, 2018, 37(20): 56-60, 80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201820009.htm
    [9]
    NELSON J T. Recent development in ground-borne noise and vibration control[J]. Journal of Sound and Vibration, 1996, 193(1): 367-376. doi: 10.1006/jsvi.1996.0277
    [10]
    李增光, 吴天行. 铁道车辆-轨道-高架桥耦合系统振动功率流分析[J]. 振动与冲击, 2010, 29(11): 78-82. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201011018.htm

    LI Zeng-guang, WU Tian-xing. Analysis of vibration power flow for a railway vehicle-track-viaduct coupled system[J]. Journal of Vibration and Shock, 2010, 29(11): 78-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201011018.htm
    [11]
    张迅, 苏斌, 李小珍. 扣件刚度与阻尼对铁路箱梁车致振动噪声的影响研究[J]. 振动与冲击, 2015, 34(15): 150-155. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201515028.htm

    ZHANG Xun, SU Bin, LI Xiao-zhen. Effects of fastener stiffness and damping on structure-borne noise of railway box-girders[J]. Journal of Vibration and Shock, 2015, 34(15): 150-155. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201515028.htm
    [12]
    李小珍, 宋立忠, 张迅. 基于现场锤击试验的高铁简支箱梁振动传递特性研究[J]. 土木工程学报, 2016, 49(5): 120-128. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201605012.htm

    LI Xiao-zhen, SONG Li-zhong, ZHANG Xun. Study on vibration transmission characteristic of high-speed railway simply-supported box-girders based on in-situ hammer excitation test[J]. China Civil Engineering Journal, 2016, 49(5): 120-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201605012.htm
    [13]
    JIANG Han-wen, GAO Liang. Analysis of the vibration characteristics of ballastless track on bridges using an energy method[J]. Applied Sciences, 2020, 10(7): 2289. doi: 10.3390/app10072289
    [14]
    袁菁江, 唐进锋, 刘文峰, 等. 客货共线铁路桥上减振型CRTS Ⅲ板式无砟轨道减振层刚度动力学影响分析[J]. 铁道科学与工程学报, 2019, 16(7): 1614-1621. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201907002.htm

    YUAN Jing-jiang, TANG Jin-feng, LIU Wen-feng, et al. Dynamic effect analysis of damping layer stiffness of vibration reducing CRTS Ⅲ slab ballastless track on mixed passenger and freight railway bridge[J]. Journal of Railway Science and Engineering, 2019, 16(7): 1614-1621. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201907002.htm
    [15]
    徐浩, 蔡文锋, 林红松, 等. 重载铁路桥上无砟轨道扣件关键参数研究[J]. 铁道工程学报, 2019(8): 40-45. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201908009.htm

    XU Hao, CAI Wen-feng, LIN Hong-song, et al. Research on the key parameters of fastener system for ballastless track on heavy-haul railway bridge[J]. Journal of Railway Engineering Society, 2019(8): 40-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC201908009.htm
    [16]
    WEI Kai, YANG Qi-lu, DOU Yin-ling, et al. Experimental investigation into temperature- and frequency-dependent dynamic properties of high-speed rail pads[J]. Construction and Building Materials, 2017, 151: 848-858. http://www.sciencedirect.com/science/article/pii/S0950061817311844
    [17]
    WEI Kai, DOU Yin-ling, WANG Feng, et al. High-frequency random vibration analysis of a high-speed vehicle-track system with the frequency-dependent dynamic properties of rail pads using a hybrid SEM-SM method[J]. Vehicle System Dynamics, 2018, 56(12): 1838-1863. http://smartsearch.nstl.gov.cn/paper_detail.html?id=bca1cfc54d6eb32f4f7f7c8d2495f1a6
    [18]
    OREGUI M, MAN A D, WOLDEKIDAN M F, et al. Obtaining rail pad properties via dynamic mechanical analysis[J]. Journal of Sound and Vibration, 2016, 363: 460-472. http://www.sciencedirect.com/science/article/pii/S0022460X15009050
    [19]
    韦凯, 王丰, 杨麒陆, 等. 钢轨扣件弹性垫板的宽频动力性能及其理论表征[J]. 铁道学报, 2019, 41(2): 130-136. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201902019.htm

    WEI Kai, WANG Feng, YANG Qi-lu, et al. Broad frequency-domain dynamic properties of rail pad and its theoretical model[J]. Journal of the China Railway Society, 2019, 41(2): 130-136. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201902019.htm
    [20]
    ZHU Sheng-yang, CAI Cheng-biao, LUO Zhen, et al. A frequency and amplitude dependent model of rail pads for the dynamic analysis of train-track interaction[J]. Science China Technological Sciences, 2015, 58(2): 191-201. doi: 10.1007/s11431-014-5686-y
    [21]
    ZOPF C, HOQUE S E, KALISKE M. Comparison of approaches to model viscoelasticity based on fractional time derivatives[J]. Computational Materials Science, 2015, 98: 287-296. http://www.sciencedirect.com/science/article/pii/S0927025614007794
    [22]
    张大伟, 翟婉明, 朱胜阳, 等. 基于橡胶弹簧非线性模型的重载车辆轮轨动力特征分析[J]. 铁道学报, 2016, 38(12): 19-27. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201612004.htm

    ZHANG Da-wei, ZHAI Wan-ming, ZHU Sheng-yang, et al. Wheel-rail dynamic interaction between heavy-haul freight car and ballasted track based on a nonlinear rubber spring model[J]. Journal of the China Railway Society, 2016, 38(12): 19-27. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201612004.htm
    [23]
    赵永玲, 侯之超. 基于分数导数的橡胶材料两种粘弹性本构模型[J]. 清华大学学报(自然科学版), 2013, 53(3): 378-383. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201303017.htm

    ZHAO Yong-ling, HOU Zhi-chao. Two viscoelastic constitutive model of rubber materials using fractional derivations[J]. Journal of Tsinghua University (Science and Technology), 2013, 53(3): 378-383. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201303017.htm
    [24]
    刘林芽, 卢沛君, 秦佳良. 基于扣件FVMP模型的车-轨耦合随机振动分析[J]. 铁道学报, 2019, 41(5): 93-100. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201905013.htm

    LIU Lin-ya, LU Pei-jun, QIN Jia-liang. Random vibration analysis of vehicle-track coupling system based on fastener FVMP model[J]. Journal of the China Railway Society, 2019, 41(5): 93-100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201905013.htm
    [25]
    MAES J, SOL H, GUILLAUME P. Measurements of the dynamic railpad properties[J]. Journal of Sound and Vibration, 2006, 293(3/4/5): 557-565. http://www.sciencedirect.com/science/article/pii/S0022460X05007625
    [26]
    蔡成标, 翟婉明, 王其昌. 高速列车与高架桥上无碴轨道相互作用研究[J]. 铁道工程学报, 2000(3): 29-32. https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC200003015.htm

    CAI Cheng-biao, ZHAI Wan-ming, WANG Qi-chang. Research on vertical interactions between high-speed train and ballastless track on bridge[J]. Journal of Railway Engineering Society, 2000(3): 29-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDGC200003015.htm
    [27]
    陈果. 车辆-轨道耦合系统随机振动分析[D]. 成都: 西南交通大学, 2000.

    CHEN Guo. The analysis on random vibration of vehicle/track coupling system[D]. Chengdu: Southwest Jiaotong University, 2000. (in Chinses
    [28]
    蔡成标, 翟婉明, 赵铁军, 等. 列车通过路桥过渡段时的动力作用研究[J]. 交通运输工程学报, 2001, 1(1): 17-19, 28. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC200101003.htm

    CAI Cheng-biao, ZHAI Wan-ming, ZHAO Tie-jun, et al. Research on dynamic interaction of train and track on roadbed-bridge transition section[J]. Journal of Traffic and Transportation Engineering, 2001, 1(1): 17-19, 28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC200101003.htm
    [29]
    刘林芽, 秦佳良, 雷晓燕, 等. 基于声传递向量法的槽形梁结构低频噪声研究[J]. 振动与冲击, 2018, 37(19): 132-138, 152. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201819022.htm

    LIU Lin-ya, QIN Jia-liang, LEI Xiao-yan, et al. Low frequency noise of a trough girder structure based on acoustic transfer vector method[J]. Journal of Vibration and Shock, 2018, 37(19): 132-138, 152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201819022.htm
    [30]
    LI Qi, WU Ding-jun. Analysis of the dominant vibration frequencies of rail bridges for structure-borne noise using a power flow method[J]. Journal of Sound and Vibration, 2013, 332(18): 4153-4163. http://www.sciencedirect.com/science/article/pii/S0022460X13001934
    [31]
    李小珍, 张迅, 刘全民, 等. 铁路32 m混凝土简支箱梁结构噪声试验研究[J]. 中国铁道科学, 2013, 34(3): 20-26. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201303003.htm

    LI Xiao-zhen, ZHANG Xun, LIU Quan-min, et al. Experimental study on structure-borne noise of railway 32 m simply-supported concrete box-girder[J]. China Railway Science, 2013, 34(3): 20-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201303003.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (737) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return