Citation: | GUO Feng, WU Sheng-chuan, FENG Yang, LIU Jian-xin, LIANG Shu-lin, YIN Zhen-kun. Structural design and strength analysis method for inner journal high-speed railway axles[J]. Journal of Traffic and Transportation Engineering, 2021, 21(5): 138-148. doi: 10.19818/j.cnki.1671-1637.2021.05.012 |
[1] |
ZHAO Hong-wei, LIANG Jian-ying, LIU Chang-qing. High-speed EMUs: characteristics of technological development and trends[J]. Engineering, 2020, 6(3): 234-244. doi: 10.1016/j.eng.2020.01.008
|
[2] |
吴圣川, 任鑫焱, 康国政, 等. 铁路车辆部件抗疲劳评估的进展与挑战[J]. 交通运输工程学报, 2021, 21(1): 81-114. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202101007.htm
WU Sheng-chuan, REN Xin-yan, KANG Guo-zheng, et al. Progress and challenge on fatigue resistance assessment of railway vehicle components[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 81-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202101007.htm
|
[3] |
杜松林, 汪开忠, 胡芳忠. 国内外高速列车车轴技术综述及展望[J]. 中国材料进展, 2019, 38(7): 641-649. https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201907002.htm
DU Song-lin, WANG Kai-zhong, HU Fang-zhong. Overview and prospect of axle technology for high speed trains at home and abroad[J]. Materials China, 2019, 38(7): 641-649. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XJKB201907002.htm
|
[4] |
SHI Huai-long, WANG Jian-bin, WU Ping-bo, et al. Field measurements of the evolution of wheel wear and vehicle dynamics for high-speed trains[J]. Vehicle System Dynamics, 2018, 56(8): 1187-1206. doi: 10.1080/00423114.2017.1406963
|
[5] |
KLINGER C, BETTGE D. Axle fracture of an ICE3 high speed train[J]. Engineering Failure Analysis, 2013, 35: 66-81. doi: 10.1016/j.engfailanal.2012.11.008
|
[6] |
SON S W, JUNG H S, KWON T S, et al. Fatigue life prediction of a railway hollow axle with a tapered bore surface[J]. Engineering Failure Analysis, 2015, 58: 44-55. doi: 10.1016/j.engfailanal.2015.08.031
|
[7] |
BRACCIALI A, MEGNA G. Contact mechanics issues of a vehicle equipped with partially independently rotating wheelsets[J]. Wear, 2016, 366/367: 233-240. doi: 10.1016/j.wear.2016.03.037
|
[8] |
TIAN J H, LU X X, MA G L, et al. Understanding the effect of elastic wheels on an urban railway system using a new wheel-rail coupling vibration model[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2020, 234: 146441932091698.
|
[9] |
WU Sheng-chuan, LUO Yan, SHEN Zhao, et al. Collaborative crack initiation mechanism of 25CrMo4 alloy steels subjected to foreign object damages[J]. Engineering Fracture Mechanics, 2020, 225: 106844. doi: 10.1016/j.engfracmech.2019.106844
|
[10] |
BERETTA S, GHIDINI A, LOMBARDO F. Fracture mechanics and scale effects in the fatigue of railway axles[J]. Engineering Fracture Mechanics, 2005, 72(2): 195-208. doi: 10.1016/j.engfracmech.2003.12.011
|
[11] |
GAO Jie-wei, PAN Xiang-nan, HAN Jing, et al. Influence of artificial defects on fatigue strength of induction hardened S38C axles[J]. International Journal of Fatigue, 2020, 139: 105746. doi: 10.1016/j.ijfatigue.2020.105746
|
[12] |
MAKINO T, SAKAI H, KOZUKA C, et al. Overview of fatigue damage evaluation rule for railway axles in Japan and fatigue property of railway axle made of medium carbon steel[J]. International Journal of Fatigue, 2020, 132: 105361. doi: 10.1016/j.ijfatigue.2019.105361
|
[13] |
MISTRY P J, JOHNSON M S. Lightweighting of railway axles for the reduction of unsprung mass and track access charges[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2020, 234(9): 958-968. doi: 10.1177/0954409719877774
|
[14] |
WU Sheng-chuan, XU Zhong-wei, LIU Yu-xuan, et al. On the residual life assessment of high-speed railway axles due to induction hardening[J]. International Journal of Rail Transportation, 2018, 6(4): 218-232. doi: 10.1080/23248378.2018.1427008
|
[15] |
FAJKOŠ R, ZIMA R, STRNADEL B. Fatigue limit of induction hardened railway axles[J]. Fatigue and Fracture of Engineering Materials and Structures, 2015, 38(10): 1255-1264. doi: 10.1111/ffe.12337
|
[16] |
LUO Yan, WU Sheng-chuan, ZHAO Xin, et al. Three- dimensional correlation of damage criticality with the defect size and lifetime of externally impacted 25CrMo4 steel[J]. Materials and Design, 2020, 195: 109001. doi: 10.1016/j.matdes.2020.109001
|
[17] |
REGAZZI D, CANTINI S, CERVELLO S, et al. Improving fatigue resistance of railway axles by cold rolling: process optimisation and new experimental evidences[J]. International Journal of Fatigue, 2020, 137: 105603. doi: 10.1016/j.ijfatigue.2020.105603
|
[18] |
梁树林, 傅茂海. 内侧悬挂转向架在城轨车辆中的应用研究[J]. 铁道车辆, 2006, 44(4): 4-7. doi: 10.3969/j.issn.1002-7602.2006.04.002
LIANG Shu-lin, FU Mao-hai. Research on application of inside suspension bogies in urban vehicles[J]. Rolling Stock, 2006, 44(4): 4-7. (in Chinese) doi: 10.3969/j.issn.1002-7602.2006.04.002
|
[19] |
邓铁松, 吴磊, 凌亮, 等. 轴箱内置与外置直线电机地铁车辆曲线通过性能对比[J]. 计算机辅助工程, 2015, 24(1): 12-17, 21. https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201501003.htm
DENG Tie-song, WU Lei, LING Liang, et al. Comparison of curving performance of linear induction motor metro vehicles with inside and outside axle boxes[J]. Computer Aided Engineering, 2015, 24(1): 12-17, 21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSFZ201501003.htm
|
[20] |
WU B W, CHEN G X, LYU J Z, et al. Effect of the axlebox arrangement of the bogie and the primary suspension parameters on the rail corrugation at the sharp curve metro track[J]. Wear, 2019, 426/427: 1828-1836. doi: 10.1016/j.wear.2019.01.038
|
[21] |
蔡明浩, 兰少明, 黄坤兰, 等. 细化Kriging模型在轻轨车轴优化设计中的应用[J]. 机械设计与制造, 2019(8): 176-179, 183. doi: 10.3969/j.issn.1001-3997.2019.08.046
CAI Ming-hao, LAN Shao-ming, HUANG Kun-lan, et al. Application of refined Kriging model in optimization design of light rail axles[J]. Machinery Design and Manufacture, 2019(8): 176-179, 183. (in Chinese) doi: 10.3969/j.issn.1001-3997.2019.08.046
|
[22] |
WU Sheng-chuan, LIU Yu-xuan, LI Cun-hai, et al. On the fatigue performance and residual life of intercity railway axles with inside axle boxes[J]. Engineering Fracture Mechanics, 2019, 197: 176-191.
|
[23] |
刘宇轩, 吴圣川, 李存海, 等. 轴箱内置型铁路车轴疲劳性能与寿命评估[J]. 交通运输工程学报, 2019, 19(3): 100-108. doi: 10.3969/j.issn.1671-1637.2019.03.011
LIU Yu-xuan, WU Sheng-chuan, LI Cun-hai, et al. Fatigue performance and life assessment of railway axle with inside axle box[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 100-108. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.03.011
|
[24] |
LI Yu-yi, REN Zun-song, ENBLOM R, et al. Wheel wear prediction on a high-speed train in China[J]. Vehicle System Dynamics, 2019, 58(12): 1839-1858.
|
[25] |
LU Yao-hui, BI Wei, ZHANG Xing, et al. Calculation method of dynamic loads spectrum and effects on fatigue damage of a full-scale carbody for high-speed trains[J]. Vehicle System Dynamics, 2019, 58(7): 1037-1056.
|
[26] |
吴毅, 项彬, 张斌, 等. 高铁车轴强度设计及全尺寸疲劳试验方法比较[J]. 铁道车辆, 2015, 53(6): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201506002.htm
WU Yi, XIANG Bin, ZHANG Bin, et al. Comparison in strength design of axles for high speed railway and full-scale fatigue test methods[J]. Rolling Stock, 2015, 53(6): 1-5. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDCL201506002.htm
|
[27] |
刘宇轩. 内置轴箱式铁路车轴疲劳强度及损伤容限评价[D]. 成都: 西南交通大学, 2019.
LIU Yu-xuan. Fatigue strength and damage tolerance assessment on railway axle with inside axle boxes[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese)
|
[28] |
王雨舟. 200 km/h高速货车内轴箱转向架总体方案设计及动力学性能研究[D]. 成都: 西南交通大学, 2019.
WANG Yu-zhou. Overall scheme design and dynamic performance study on inner axle box bogie for 200 km/h high speed freight car[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese)
|
[29] |
GUO Feng, WU Sheng-chuan, LIU Jian-xin, et al. Fatigue life assessment of bogie frames in high-speed railway vehicles considering gear meshing[J]. International Journal of Fatigue, 2020, 132: 105353. doi: 10.1016/j.ijfatigue.2019.105353
|
[30] |
HU Ya-nan, QIN Qing-bin, WU Sheng-chuan, et al. Fatigue resistance and remaining life assessment of induction-hardened S38C steel railway axles[J]. International Journal of Fatigue, 2021, 144: 106068. doi: 10.1016/j.ijfatigue.2020.106068
|
[31] |
XU Zhong-wei, WU Sheng-chuan, WANG Xi-shu. Fatigue evaluation for high-speed railway axles with surface scratch[J]. International Journal of Fatigue, 2019, 123: 79-86. doi: 10.1016/j.ijfatigue.2019.02.016
|
[32] |
WU Sheng-chuan, XU Zhong-wei, KANG Guo-zheng. Probabilistic fatigue assessment for high-speed railway axles due to foreign object damages[J]. International Journal of Fatigue, 2018, 117: 90-100. doi: 10.1016/j.ijfatigue.2018.08.011
|