Citation: | LIU Chen-guang, HE Zhi-bo, CHU Xiu-min, WU Wen-xiang, LI Song-long, XIE Shuo. Overview on ship formation control[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 10-27. doi: 10.19818/j.cnki.1671-1637.2022.04.002 |
[1] |
REYHANOGLU M. Exponential stabilization of an underactuated autonomous surface vessel[J]. Automatica, 1997, 33(12): 2249-2254. doi: 10.1016/S0005-1098(97)00141-6
|
[2] |
袁裕鹏, 王康豫, 尹奇志, 等. 船舶航速优化综述[J]. 交通运输工程学报, 2020, 20(6): 18-34. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202006005.htm
YUAN Yu-peng, WANG Kang-yu, YIN Qi-zhi, et al. Review on ship speed optimization[J]. Journal of Traffic and Transportation Engineering, 2020, 20(6): 18-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202006005.htm
|
[3] |
ROBERTS G N, ZIRILLI A, TIANO A, et al. A fuzzy controller for integrated ship motion control[J]. IFAC Proceedings Volumes, 1999, 32(2): 8279-8284. doi: 10.1016/S1474-6670(17)57412-1
|
[4] |
MCGOOKIN E W, MURRAY-SMITH D J, LI Yun, et al. Ship steering control systemoptimisation using genetic algorithms[J]. Control Engineering Practice, 2000, 8(4): 429-443. doi: 10.1016/S0967-0661(99)00159-8
|
[5] |
ZHANG Rong-jun, CHEN Yao-bin, SUN Zeng-qi, et al. Path control of a surface ship in restricted waters using sliding mode[J]. IEEE Transactions on Control Systems Technology, 2000, 8(4): 722-732. doi: 10.1109/87.852916
|
[6] |
NIJMEIJER H, PETTERSEN K Y. Underactuated ship tracking control: theory and experiments[J]. International Journal of Control, 2001, 74(14): 1435-1446. doi: 10.1080/00207170110072039
|
[7] |
PAUL K C W. Navigation strategies for multiple autonomous mobile robots moving in formation[J]. Journal of Robotic Systems, 1991, 8(2): 177-195. doi: 10.1002/rob.4620080204
|
[8] |
周翔宇, 吴兆麟, 王凤武, 等. 自主船舶的定义及其自主水平的界定[J]. 交通运输工程学报, 2019, 19(6): 149-162. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201906016.htm
ZHOU Xiang-yu, WU Zhao-lin, WANG Feng-wu, et al. Definition of autonomous ship and its autonomy level[J]. Journal of Traffic and Transportation Engineering, 2019, 19(6): 149-162. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201906016.htm
|
[9] |
柳晨光, 初秀民, 吴青, 等. USV发展现状及展望[J]. 中国造船, 2014, 55(4): 194-205. doi: 10.3969/j.issn.1000-4882.2014.04.024
LIU Chen-guang, CHU Xiu-min, WU Qing, et al. A review and prospect of USV research[J]. Shipbuilding of China, 2014, 55(4): 194-205. (in Chinese) doi: 10.3969/j.issn.1000-4882.2014.04.024
|
[10] |
侯瑞超, 唐智诚, 王博, 等. 水面无人艇智能化技术的发展现状和趋势[J]. 中国造船, 2020, 61(增1): 211-220. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC2020S1026.htm
HOU Rui-chao, TANG Zhi-cheng, WANG Bo, et al. Development status and trend of intelligent technology for unmanned surface vehicles[J]. Shipbuilding of China, 2020, 61(S1): 211-220. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC2020S1026.htm
|
[11] |
彭周华, 吴文涛, 王丹, 等. 多无人艇集群协同控制研究进展与未来趋势[J]. 中国舰船研究, 2021, 16(1): 51-64, 82. https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG202101006.htm
PENG Zhou-hua, WU Wen-tao, WANG Dan, et al. Coordinated control of multiple unmanned surface vehicles: recent advances and future trends[J]. Chinese Journal of Ship Research, 2021, 16(1): 51-64, 82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG202101006.htm
|
[12] |
LEWIS M A, TAN K H. High precision formation control of mobile robots using virtual structures[J]. Autonomous Robots, 1997, 4(4): 387-403. doi: 10.1023/A:1008814708459
|
[13] |
BALCH T, ARKIN R C. Behavior-based formation control for multirobot teams[J]. IEEE Transactions on Robotics and Automation, 1998, 14(6): 926-939. doi: 10.1109/70.736776
|
[14] |
BEARD R W, LAWTON J, HADAEGH F Y. A coordination architecture for spacecraft formation control[J]. IEEE Transactions on Control Systems Technology, 2001, 9(6): 777-790. doi: 10.1109/87.960341
|
[15] |
DAS A K, FIERRO R, KUMAR V, et al. A vision-based formation control framework[J]. IEEE Transactions on Robotics and Automation, 2002, 18(5): 813-825. doi: 10.1109/TRA.2002.803463
|
[16] |
SKJETNE R, MOI S, FOSSEN T I. Nonlinear formation control of marine craft[C]//IEEE. Proceedings of the 41st IEEE Conference on Decision and Control. New York: IEEE, 2002: 1699-1704.
|
[17] |
张伟, 王乃新, 魏世琳, 等. 水下无人潜航器集群发展现状及关键技术综述[J]. 哈尔滨工程大学学报, 2020, 41(2): 289-297. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG202002020.htm
ZHANG Wei, WANG Nai-xin, WEI Shi-lin, et al. Overview of unmanned underwater vehicle swarm development status and key technologies[J]. Journal of Harbin Engineering University, 2020, 41(2): 289-297. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG202002020.htm
|
[18] |
邢志伟, 李斯, 罗谦. 机场道面除冰雪车辆队形控制模型[J]. 交通运输工程学报, 2019, 19(4): 182-190. doi: 10.3969/j.issn.1671-1637.2019.04.017
XING Zhi-wei, LI Si, LUO Qian. Formation control model of airport pavement deicing vehicles[J]. Journal of Traffic and Transportation Engineering, 2019, 19(4): 182-190. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.04.017
|
[19] |
柳晨光, 初秀民, 欧阳雪, 等. 欠驱动水面模型船航向保持控制仿真平台[J]. 中国航海, 2016, 39(4): 1-5, 112. doi: 10.3969/j.issn.1000-4653.2016.04.001
LIU Chen-guang, CHU Xiu-min, OUYANG Xue, et al. Simulation platform for course keeping control of underactuated surface model ships[J]. Navigation of China, 2016, 39(4): 1-5, 112. (in Chinese) doi: 10.3969/j.issn.1000-4653.2016.04.001
|
[20] |
严新平, 吴超, 马枫. 面向智能航行的货船"航行脑"概念设计[J]. 中国航海, 2017, 40(4): 95-98, 136. doi: 10.3969/j.issn.1000-4653.2017.04.020
YAN Xin-ping, WU Chao, MA Feng. Conceptual design of navigation brain system for intelligent cargo ship[J]. Navigation of China, 2017, 40(4): 95-98, 136. (in Chinese) doi: 10.3969/j.issn.1000-4653.2017.04.020
|
[21] |
IHLE IA F, ARCAK M, FOSSEN T I. Passivity-based designs for synchronized path-following[J]. Automatica, 2007, 43(9): 1508-1518. doi: 10.1016/j.automatica.2007.02.018
|
[22] |
FAHIMI F. Sliding-mode formation control for underactuated surface vessels[J]. IEEE Transactions on Robotics, 2007, 23(3): 617-622. doi: 10.1109/TRO.2007.898961
|
[23] |
PENG Zhou-hua, WANG Jun, WANG Dan, et al. An overview of recent advances in coordinated control of multiple autonomous surface vehicles[J]. IEEE Transactions on Industrial Informatics, 2020, 17(2): 732-745.
|
[24] |
柯涛, 张恒, 宋佳. 海上无人艇编队抗同频干扰技术研究[J]. 中国造船, 2020, 61(增1): 105-112. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC2020S1013.htm
KE Tao, ZHANG Heng, SONG Jia. Research on the technology of anti-jamming of the same frequency for the formation of USV[J]. Shipbuilding of China, 2020, 61(S1): 105-112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZC2020S1013.htm
|
[25] |
张卫东, 刘笑成, 韩鹏. 水上无人系统研究进展及其面临的挑战[J]. 自动化学报, 2020, 46(5): 847-857. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO202005002.htm
ZHANG Wei-dong, LIU Xiao-cheng, HAN Peng. Progress and challenges of overwater unmanned systems[J]. Acta Automatica Sinica, 2020, 46(5): 847-857. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO202005002.htm
|
[26] |
SUN Zhi-jian, ZHANG Guo-qing, LU Yu, et al. Leader- follower formation control of underactuated surface vehicles based on sliding mode control and parameter estimation[J]. ISA Transactions, 2018, 72: 15-24. doi: 10.1016/j.isatra.2017.11.008
|
[27] |
ENCARN ACAO P, PASCOAL A. Combined trajectory tracking and path following: an application to the coordinated control of autonomous marine craft[C]//IEEE. Proceedings of the 40th IEEE Conference on Decision and Control. New York: IEEE, 2001: 964-969.
|
[28] |
PEREIRA G A S, PEREIRA G A S, DAS A K, et al. Formation control with configuration space constraints[C]//IEEE. Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems. New York: IEEE, 2003: 2755-2760.
|
[29] |
李芸, 肖英杰. 领航跟随法和势函数组合的船舶编队控制[J]. 控制理论与应用, 2016, 33(9): 1259-1264. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201609016.htm
LI Yun, XIAO Ying-jie. Combination of leader-follower method and potential function about ship formation control[J]. Control Theory and Applications, 2016, 33(9): 1259-1264. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201609016.htm
|
[30] |
SHI Hong, WANG Long, CHU Tian-guang. Virtual leader approach to coordinated control of multiple mobile agents with asymmetric interactions[J]. Physica D: Nonlinear Phenomena, 2006, 213(1): 51-65. doi: 10.1016/j.physd.2005.10.012
|
[31] |
王冬梅, 方华京. 基于虚拟领航者的智能群体群集运动控制[J]. 华中科技大学学报(自然科学版), 2008, 36(10): 5-7. doi: 10.3321/j.issn:1671-4512.2008.10.002
WANG Dong-mei, FANG Hua-jing. Virtual leaders-based control of flocking motion of intelligent swarm[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2008, 36(10): 5-7. (in Chinese) doi: 10.3321/j.issn:1671-4512.2008.10.002
|
[32] |
王彬. 多艘动力定位船鲁棒自适应编队控制研究[D]. 哈尔滨: 哈尔滨工程大学, 2017.
WANG Bin. Research on robust adaptive formation control of multiple dynamic positioning vessels[D]. Harbin: Harbin Engineering University, 2017. (in Chinese)
|
[33] |
PENG Zhou-hua, WANG Dan, YAO Yu-bin, et al. Robust adaptive formation control with autonomous surface vehicles[C]// IEEE. Proceedings of the 29th Chinese Control Conference. New York: IEEE, 2010: 2115-2120.
|
[34] |
DUNBAR W B, CAVENEY D S. Distributed receding horizon control of vehicle platoons: stability and string stability[J]. IEEE Transactions on Automatic Control, 2011, 57(3): 620-633.
|
[35] |
ÖGREN P, EGERSTEDT M, HU X. A control Lyapunov function approach to multiagent coordination[J]. IEEE Transactions on Robotics and Automation, 2001, 18(5): 847-851.
|
[36] |
GHOMMEM J, MNIF F, POISSON G, et al. Nonlinear formation control of a group of underactuated ships[C]// IEEE. Proceedings of the IEEE OCEANS 2007-Europe. New York: IEEE, 2007: 1-8.
|
[37] |
秦梓荷, 林壮, 李平, 等. 存在饱和输入量的欠驱动船舶编队控制[J]. 华中科技大学学报(自然科学版), 2015, 43(8): 75-78. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201508016.htm
QIN Zi-he, LIN Zhuang, LI Ping, et al. Formation control of underactuated ships with input saturation[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2015, 43(8): 75-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201508016.htm
|
[38] |
REN W, BEARD R. Decentralized scheme for spacecraft formation flying via the virtual structure approach[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(1): 73-82. doi: 10.2514/1.9287
|
[39] |
MEHRJERDI H, GHOMMAM J, SAAD M. Nonlinear coordination control for a group of mobile robots using a virtual structure[J]. Mechatronics, 2011, 21(7): 1147-1155. doi: 10.1016/j.mechatronics.2011.06.006
|
[40] |
崔荣鑫, 徐德民, 沈猛, 等. 基于行为的机器人编队控制研究[J]. 计算机仿真, 2006, 23(2): 137-139. doi: 10.3969/j.issn.1006-9348.2006.02.040
CUI Rong-xin, XU De-min, SHEN Meng, et al. Formation control of robots based on behavior[J]. Computer Simulation, 2006, 23(2): 137-139. (in Chinese) doi: 10.3969/j.issn.1006-9348.2006.02.040
|
[41] |
BALCH T, ARKIN R C. Behavior-based formation control for multirobot teams[J]. IEEE Transactions on Robotics and Automation, 1998, 14(6): 926-939. doi: 10.1109/70.736776
|
[42] |
PANG Shi-kun, LI Ying-hui, YI Hong. Joint formation control with obstacle avoidance of towfish and multiple autonomous underwater vehicles based on graph theory and the null-space-based method[J]. Sensors, 2019, 19(11): 2591. doi: 10.3390/s19112591
|
[43] |
ANTONELLI G, ARRICHIELLO F, CHIAVERINI S. Experiments of formation control with collisions avoidance using the null-space-based behavioral control[C]//IEEE. 2006 14th Mediterranean Conference on Control and Automation. New York: IEEE, 2006: 1-6.
|
[44] |
ROSALES C D, SARCINELLI-FILHO M, SCAGLIA G, et al. Formation control of unmanned aerial vehicles based on the null-space[C]//IEEE. 2014 International Conference on Unmanned Aircraft Systems (ICUAS). New York: IEEE, 2014: 229-236.
|
[45] |
AHMAD S, FENG Zhi, HU Guo-qiang. Multi-robot formation control using distributed null space behavioral approach[C]//IEEE. International Conference on Robotics and Automation. New York: IEEE, 2014: 3607-3612.
|
[46] |
SEOK P B, JIN Y S. An error transformation approach for connectivity-preserving and collision-avoiding formation tracking of networked uncertain underactuated surface vessels[J]. IEEE Transactions on Cybernetics, 2018, DOI: 10.1109/TCYB.2018.2834919.
|
[47] |
秦奇. 基于刚性结构的船舶编队控制[D]. 大连: 大连海事大学, 2018.
QIN Qi. Formation control for marine surface vessels based on rigid structure[D]. Dalian: Dalian Maritime University, 2018. (in Chinese)
|
[48] |
HUANG Chen-feng, ZHANG Xian-ku, ZHANG Guo-qing. Improved decentralized finite-time formation control of underactuated USVs via a novel disturbance observer[J]. Ocean Engineering, 2019, 174: 117-124. doi: 10.1016/j.oceaneng.2019.01.043
|
[49] |
曲成刚, 曹喜滨, 张泽旭. 人工势场和虚拟领航者结合的多智能体编队[J]. 哈尔滨工业大学学报, 2014, 46(5): 1-5. doi: 10.3969/j.issn.1009-1971.2014.05.001
QU Cheng-gang, CAO Xi-bin, ZHANG Ze-xu. Multi-agent system formation integrating virtual leaders into artificial potentials[J]. Journal of Harbin Institute of Technology, 2014, 46(5): 1-5. (in Chinese) doi: 10.3969/j.issn.1009-1971.2014.05.001
|
[50] |
王树凤, 张钧鑫, 张俊友. 基于人工势场和虚拟领航者的智能车辆编队控制[J]. 上海交通大学学报, 2020, 54(3): 305-311. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT202003011.htm
WANG Shu-feng, ZHANG Jun-xin, ZHANG Jun-you. Intelligent vehicles formation control based on artificial potential field and virtual leader[J]. Journal of Shanghai Jiao Tong University, 2020, 54(3): 305-311. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT202003011.htm
|
[51] |
王楠, 徐洁琼. 基于图论和行为的深空航天器网络编队控制[J]. 沈阳工业大学学报, 2011, 33(4): 439-444.
WANG Nan, XU Jie-qiong. Graph theory and behavior based networked formation control for spacecraft in deep space[J]. Journal of Shenyang University of Technology, 2011, 33(4): 439-444. (in Chinese)
|
[52] |
LIU Chen-guang, QI Jun-lin, CHU Xiu-min, et al. Cooperative ship formation system and control methods in the ship lock waterway[J]. Ocean Engineering, 2021, 226: 108826. doi: 10.1016/j.oceaneng.2021.108826
|
[53] |
欧阳子路, 王鸿东, 黄一, 等. 基于改进RRT算法的无人艇编队路径规划技术[J]. 中国舰船研究, 2020, 15(3): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG202003003.htm
OUYANG Zi-lu, WANG Hong-dong, HUANG Yi, et al. Path planning technologies for USV formation based on improved RRT[J]. Chinese Journal of Ship Research, 2020, 15(3): 18-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG202003003.htm
|
[54] |
BARRAQUAND J, LATOMBE J C. Robot motion planning: a distributed representation approach[J]. The International Journal of Robotics Research, 1991, 10(6): 628-649. doi: 10.1177/027836499101000604
|
[55] |
黄振葵, 申雯竹, 杜巧玲, 等. 基于遍历算法的巡航清漂船控制系统[J]. 吉林大学学报(信息科学版), 2019, 37(2): 208-215. doi: 10.3969/j.issn.1671-5896.2019.02.015
HUANG Zhen-kui, SHEN Wen-zhu, DU Qiao-ling, et al. Studies on control system of small-scale float-garbage automatic cruise ship based on open-water traversal algorithm[J]. Journal of Jilin University (Information Science Edition), 2019, 37(2): 208-215. (in Chinese) doi: 10.3969/j.issn.1671-5896.2019.02.015
|
[56] |
HART P E, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2): 100-107. doi: 10.1109/TSSC.1968.300136
|
[57] |
SETHIANJ A. A fast marching level set method for monotonically advancing fronts[J]. Proceedings of the National Academy of Sciences, 1996, 93(4): 1591-1595. doi: 10.1073/pnas.93.4.1591
|
[58] |
CHIANG H T L, TAPIA L. COLREG-RRT: an RRT- based COLREGS-compliant motion planner for surface vehicle navigation[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 2024-2031. doi: 10.1109/LRA.2018.2801881
|
[59] |
XIN Jun-feng, ZHONG Jia-bao, YANG Feng-ru, et al. An improved genetic algorithm for path-planning of unmanned surface vehicle[J]. Sensors, 2019, 19(11): 2640. doi: 10.3390/s19112640
|
[60] |
KIRKPATRICK S, GELATT C D, VECCHI M P. Optimization by simulated annealing[J]. Science, 1983, 220(4598): 671-680. doi: 10.1126/science.220.4598.671
|
[61] |
LYRIDIS D V. An improved ant colony optimization algorithm for unmanned surface vehicle local path planning with multi-modality constraints[J]. Ocean Engineering, 2021, 241: 109890. doi: 10.1016/j.oceaneng.2021.109890
|
[62] |
EBERHART R, KENNEDY J. A new optimizer using particle swarm theory[C]//IEEE. Proceedings of the Sixth International Symposium on Micro Machine and Human Science. New York: IEEE, 1995: 39-43.
|
[63] |
WANG Le, LI Shi-jie, LIU Jia-lun, et al. Ship docking and undocking control with adaptive-mutation beetle swarm prediction algorithm[J]. Ocean Engineering, 2022, 251: 111021.
|
[64] |
史恩秀, 陈敏敏, 李俊, 等. 基于蚁群算法的移动机器人全局路径规划方法研究[J]. 农业机械学报, 2014, 45(6): 53-57. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201406009.htm
SHI En-xiu, CHEN Min-min, LI Jun, et al. Research on method of global path-planning for mobile robot based on ant-colony algorithm[J]. Transactions of the Chinese Society of Agricultural Machinery, 2014, 45(6): 53-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201406009.htm
|
[65] |
LIU Yuan-chang, BUCKNALL R. Path planning algorithm for unmanned surface vehicle formations in a practical maritime environment[J]. Ocean Engineering, 2015, 97: 126-144.
|
[66] |
MA Yong, HU Meng-qi, YAN Xin-ping. Multi-objective path planning for unmanned surface vehicle with currents effects[J]. ISA Transactions, 2018, 75: 137-156.
|
[67] |
SANG Hong-qiang, YOU Yu-song, SUN Xiu-jun, et al. The hybrid path planning algorithm based on improved A* and artificial potential field for unmanned surface vehicle formations[J]. Ocean Engineering, 2021, 223: 108709.
|
[68] |
顾辰. 改进的A*算法在机器人路径规划中的应用[J]. 电子设计工程, 2014, 22(19): 96-98, 102. https://www.cnki.com.cn/Article/CJFDTOTAL-GWDZ201419031.htm
GU Chen. Application of improved A* algorithm in robot path planning[J]. Electronic Design Engineering, 2014, 22(19): 96-98, 102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWDZ201419031.htm
|
[69] |
陈若男, 文聪聪, 彭玲, 等. 改进A*算法在机器人室内路径规划中的应用[J]. 计算机应用, 2019, 39(4): 1006-1011. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201904013.htm
CHEN Ruo-nan, WEN Cong-cong, PENG Ling, et al. Application of improved A* algorithm in indoor path planning for mobile robot[J]. Journal of Computer Applications, 2019, 39(4): 1006-1011. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201904013.htm
|
[70] |
SINGH Y, SHARMA S, SUTTON R, et al. A constrained A* approach towards optimal path planning for an unmanned surface vehicle in a maritime environment containing dynamic obstacles and ocean currents[J]. Ocean Engineering, 2018, 168: 187-201.
|
[71] |
LIU Chen-guang, MAO Qing-zhou, CHU Xiu-min, et al. An improved A-star algorithm considering water current, traffic separation and berthing for vessel path planning[J]. Applied Sciences, 2019, 9(6): 1057.
|
[72] |
NAEEM W, IRWIN G W, YANG A. COLREGs-based collision avoidance strategies for unmanned surface vehicles[J]. Mechatronics, 2012, 22(6): 669-678.
|
[73] |
吕红光, 尹勇. 基于电子海图矢量数据建模的无人船路径规划[J]. 交通信息与安全, 2019, 37(5): 94-106. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201905013.htm
LYU Hong-guang, YIN Yong. Path planning of autonomous ship based on electronic chart vector data modeling[J]. Journal of Transportation Information and Safety, 2019, 37(5): 94-106. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201905013.htm
|
[74] |
LYU Hong-guang, YIN Yong. COLREGS-constrained real-time path planning for autonomous ships using modified artificial potential fields[J]. The Journal of Navigation, 2019, 72(3): 588-608.
|
[75] |
YOO B, KIM J. Path optimization for marine vehicles in ocean currents using reinforcement learning[J]. Journal of Marine Science and Technology, 2016, 21(2): 334-343.
|
[76] |
谢朔. 基于天牛须优化的船舶运动建模与避碰方法研究[D]. 武汉: 武汉理工大学, 2020.
XIE Shuo. Beetle antenna search based ship motion modeling and collision avoidance methods[D]. Wuhan: Wuhan University of Technology, 2020. (in Chinese)
|
[77] |
LEE S M, KWON K Y, JOONGSEON J. A fuzzy logic for autonomous navigation of marine vehicles satisfying COLREG guidelines[J]. International Journal of Control, Automation, and Systems, 2004, 2(2): 171-181.
|
[78] |
DAI Shi-lu, HE Shu-de, LIN Hai, et al. Platoon formation control with prescribed performance guarantees for USVs[J]. IEEE Transactions on Industrial Electronics, 2017, 65(5): 4237-4246.
|
[79] |
林安辉, 蒋德松, 曾建平. 具有输入饱和的欠驱动船舶编队控制[J]. 自动化学报, 2018, 44(8): 1496-1504. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201808013.htm
LIN An-hui, JIANG De-song, ZENG Jian-ping. Underactuated ship formation control with input saturation[J]. Acta Automatica Sinica, 2018, 44(8): 1496-1504. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201808013.htm
|
[80] |
周卫东, 刘一萌, 查羊羊. 抗时滞无人艇编队队形控制及变换[J]. 哈尔滨工程大学学报, 2019, 40(11): 1865-1869. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201911010.htm
ZHOU Wei-dong, LIU Yi-meng, ZHA Yang-yang. Anti-time- delay unmanned surface vehicle formation control and transformation[J]. Journal of Harbin Engineering University, 2019, 40(11): 1865-1869. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201911010.htm
|
[81] |
蔡星, 谢磊, 苏宏业, 等. 基于串联结构的分布式模型预测控制[J]. 自动化学报, 2013, 39(5): 44-52. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201305007.htm
CAI Xing, XIE Lei, SU Hong-ye, et al. Distributed model predictive control based on cascade processes[J]. Acta Automatica Sinica, 2013, 39(5): 44-52. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201305007.htm
|
[82] |
SCATTOLINI R. Architectures for distributed and hierarchical model predictive control—a review[J]. Journal of Process Control, 2009, 19(5): 723-731.
|
[83] |
肖亚辉, 王新民, 王晓燕, 等. 无人机三维编队飞行模糊PID控制器设计[J]. 西北工业大学学报, 2011, 29(6): 834-838. https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201106003.htm
XIAO Ya-hui, WANG Xin-min, WANG Xiao-yan, et al. An effective controller design of formation flight of unmanned aerial vehicles (UAV)[J]. Journal of Northwestern Polytechnical University, 2011, 29(6): 834-838. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD201106003.htm
|
[84] |
LI Tie-shan, ZHAO Rong, CHEN C L P, et al. Finite-time formation control of under-actuated ships using nonlinear sliding mode control[J]. IEEE Transactions on Cybernetics, 2018, 48(11): 3243-3253.
|
[85] |
DO K D. Practical formation control of multiple underactuated ships with limited sensing ranges[J]. Robotics and Autonomous Systems, 2011, 59(6): 457-471.
|
[86] |
SHOJAEI K. Leader-follower formation control of underactuated autonomous marine surface vehicles with limited torque[J]. Ocean Engineering, 2015, 105: 196-205.
|
[87] |
邓蕴. 舰船编队避碰的自适应控制研究[J]. 舰船科学技术, 2017, 39(20): 31-33. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201720012.htm
DENG Yun. Research on adaptive control of ship formation collision avoidance[J]. Ship Science and Technology, 2017, 39(20): 31-33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201720012.htm
|
[88] |
MAHMOOD A, KIM Y. Decentrailized formation flight control of quadcopters using robust feedback linearization[J]. Journal of the Franklin Institute, 2017, 354(2): 852-871.
|
[89] |
HUANG Chen-feng, ZHANG Xian-ku, ZHANG Guo-qing. Adaptive neural finite-time formation control for multiple underactuated vessels with actuator faults[J]. Ocean Engineering, 2021, 222: 108556.
|
[90] |
张浩. 多智能体系统分布式编队及其最优控制算法研究[D]. 西安: 西安电子科技大学, 2019.
ZHANG Hao. Research on the distributed formation control and optimization of multi-agent system[D]. Xi'an: Xidian University, 2019. (in Chinese)
|
[91] |
NEGENBORN R R, MAESTRE J M. Distributed model predictive control: an overview and roadmap of future research opportunities[J]. IEEE Control Systems Magazine, 2014, 34(4): 87-97.
|
[92] |
GAO Yu-long, XIA Yuan-qing, DAI Li. Cooperative distributed model predictive control of multiple coupled linear systems[J]. IET Control Theory and Applications, 2015, 9(17): 2561-2567.
|
[93] |
FERRAMOSCA A, LIMON D, ALVARADO I, et al. Cooperative distributed MPC for tracking[J]. Automatica, 2013, 49(4): 906-914.
|
[94] |
LIU Teng-fei, JIANG Zhong-ping. Distributed formation control of nonholonomic mobile robots without global position measurements[J]. Automatica, 2013, 49(2): 592-600.
|
[95] |
ZHOU Zhen, WANG Hong-bin, WANG Yue-ling, et al. Distributed formation control for multiple quadrotor UAVs under Markovian switching topologies with partially unknown transition rates[J]. Journal of the Franklin Institute, 2019, 356(11): 5706-5728.
|
[96] |
ZHENG Hua-rong, WU Jun, WU Wei-min, et al. Cooperative distributed predictive control for collision-free vehicle platoons[J]. IET Intelligent Transport Systems, 2018, 13(5): 816-824.
|
[97] |
CHEN Lin-ying, HOPMAN H, NEGENBORN R R. Distributed model predictive control for vessel train formations of cooperative multi-vessel systems[J]. Transportation Research Part C: Emerging Technologies, 2018, 92: 101-118.
|
[98] |
CHEN Lin-ying, HOPMAN H, NEGENBORN R R. Distributed model predictive control for cooperative floating object transport with multi-vessel systems[J]. Ocean Engineering, 2019, DOI: 10.1016/j.oceaneng.2019.106515.
|
[99] |
ZHENG Hua-rong, NEGENBORN R R, LODEWIJKS G. Cooperative distributed collision avoidance based on ADMM for waterborne AGVs[C]//Springer. Proceedings of 2015 International Conference on Computational Logistics. Berlin: Springer, 2015: 181-194.
|
[100] |
中国船级社. 自主货物运输船舶指南[R]. 北京: 中国船级社, 2018.
China Classification Society. Guidelines of autonomous cargo ships[R]. Beiing: China Classification Society, 2018. (in Chinese)
|
[101] |
徐利伟. 智能网联汽车队列成形控制及队列稳定性研究[D]. 南京: 东南大学, 2019.
XU Li-wei. Formation control and stability analysis of connected and automated vehicle platoon[D]. Nanjing: Southeast University, 2019. (in Chinese)
|
[102] |
王祥科, 李迅, 郑志强. 多智能体系统编队控制相关问题研究综述[J]. 控制与决策, 2013(11): 1601-1613. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201311001.htm
WANG Xiang-ke, LI Xun, ZHENG Zhi-qiang. Survey of developments on multi-agent formation control related problems[J]. Control and Decision, 2013(11): 1601-1613. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201311001.htm
|
[103] |
田大新, 康璐. 基于鱼群效应的无人驾驶车辆编队算法研究[J]. 无人系统技术, 2018, 1(4): 62-67. https://www.cnki.com.cn/Article/CJFDTOTAL-UMST201804007.htm
TIAN Da-xin, KANG Lu. Research on algorithm of unmanned vehicle formation based on fish school[J]. Unmanned Systems Technology, 2018, 1(4): 62-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-UMST201804007.htm
|
[104] |
周子为, 段海滨, 范彦铭. 仿雁群行为机制的多无人机紧密编队[J]. 中国科学: 技术科学, 2017, 47(3): 230-238. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201703002.htm
ZHOU Zi-wei, DUAN Hai-bin, FAN Yan-ming. Unmanned aerial vehicle close formation control based on the behavior mechanism in wild geese[J]. Scientia Sinica Technologica, 2017, 47(3): 230-238. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201703002.htm
|
[105] |
杨之元, 段海滨, 范彦铭. 基于莱维飞行鸽群优化的仿雁群无人机编队控制器设计[J]. 中国科学: 技术科学, 2018, 48(2): 161-169. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201802005.htm
YANG Zhi-yuan, DUAN Hai-bin, FAN Yan-ming. Unmanned aerial vehicle formation controller design via the behavior mechanism in wild geese based on Levy flight pigeon-inspired optimization[J]. Scientia Sinica Technologica, 2018, 48(2): 161-169. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201802005.htm
|
[106] |
张弛, 张笛, 孟上, 等. 极地冰区船舶航运的发展动态与展望——POAC 2017国际会议综述[J]. 交通信息与安全, 2017, 35(5): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201705001.htm
ZHANG Chi, ZHANG Di, MENG Shang, et al. Trends and prospects of polar navigation research from 24th POAC International Conference[J]. Journal of Transportation Information and Safety, 2017, 35(5): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201705001.htm
|