Citation: | PENG Yun, LI Xiang-da, WANG Wen-yuan, REN Li. Review on energy saving and emission reduction strategies of green container ports[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 28-46. doi: 10.19818/j.cnki.1671-1637.2022.04.003 |
[1] |
CHEN Ji-hong, ZHENG Tian-xiao, GARG A, et al. Alternative maritime power application as a green port strategy: barriers in China[J]. Journal of Cleaner Production, 2019, 213: 825-837. doi: 10.1016/j.jclepro.2018.12.177
|
[2] |
王昊宇. 大连港绿色港口评价体系研究[D]. 大连: 大连理工大学, 2016.
WANG Hao-yu. Construction of assessment framework for green port taken Dalian as a case study[D]. Dalian: Dalian University of Technology, 2016. (in Chinese)
|
[3] |
陈晓峰, 徐金环. 二十一世纪的港口——绿色之港[J]. 港工技术, 2002(2): 6-8. doi: 10.3969/j.issn.1004-9592.2002.02.003
CHEN Xiao-feng, XU Jin-huan. A green port: port of the 21st century[J]. Port Engineering Technology, 2002(2): 6-8. (in Chinese) doi: 10.3969/j.issn.1004-9592.2002.02.003
|
[4] |
TROZZI C, VACCARO R. Environmental impact of port activities[C]//BREBBIA C A, OLIVELLA J. Maritime Engineering and Ports Ⅱ. Southampton: WIT Press, 2000: 151-161.
|
[5] |
常祎妹, 朱晓宁, 王力. 集装箱码头集成调度研究综述[J]. 交通运输工程学报, 2019, 19(1): 136-146. doi: 10.3969/j.issn.1671-1637.2019.01.014
CHANG Yi-mei, ZHU Xiao-ning, WANG Li. Review on integrated scheduling of container terminals[J]. Journal of Traffic and Transportation Engineering, 2019, 19(1): 136-146. (in Chinese) doi: 10.3969/j.issn.1671-1637.2019.01.014
|
[6] |
PENG Yun, LI Xiang-da, WANG Wen-yuan, et al. A simulation- based research on carbon emission mitigation strategies for green container terminals[J]. Ocean Engineering, 2018, 163: 288-298. doi: 10.1016/j.oceaneng.2018.05.054
|
[7] |
HE Ying, JI Yi-jun. Discussion on green port construction of Tianjin Port[C]//IACSIT Press. 2010 International Conference on Biology, Environment and Chemistry. Singapore: IACSIT Press, 2011: 467-469.
|
[8] |
CHANG C C, WANG C M. Evaluating the effects of green port policy: case study of Kaohsiung Harbor in Taiwan[J]. Transportation Research Part D: Transport and Environment, 2012, 17(3): 185-189. doi: 10.1016/j.trd.2011.11.006
|
[9] |
卢勇. 绿色港口评价体系研究[D]. 上海: 上海交通大学, 2009.
LU Yong. Study on the assessment framework for green port[D]. Shanghai: Shanghai Jiao Tong University, 2009. (in Chinese)
|
[10] |
陈姝灵. 上海港绿色港口评价研究[D]. 南昌: 南昌大学, 2016.
CHEN Shu-ling. The research onevaluation of green port in Shanghai Port[D]. Nanchang: Nanchang University, 2016. (in Chinese)
|
[11] |
耿东耀, 文豪, 张德文, 等. 集装箱绿色装卸工艺综合评价指标体系的研究[J]. 起重运输机械, 2014(4): 64-67. doi: 10.3969/j.issn.1001-0785.2014.04.023
GENG Dong-yao, WEN Hao, ZHANG De-wen, et al. Study on comprehensive evaluation index system of container green handling technology[J]. Hoisting and Conveying Machinery, 2014(4): 64-67. (in Chinese) doi: 10.3969/j.issn.1001-0785.2014.04.023
|
[12] |
GILBERT P, BOWS-LARKIN A, MANDER S, et al. Technologies for the high seas: meeting the climate challenge[J]. Carbon Management, 2014, 5(4): 447-461. doi: 10.1080/17583004.2015.1013676
|
[13] |
STYHRE L, WINNES H, BLACK J, et al. Greenhouse gas emissions from ships in ports—case studies in four continents[J]. Transportation Research Part D: Transport and Environment, 2017, 54: 212-224. doi: 10.1016/j.trd.2017.04.033
|
[14] |
PAUL D, PETERSON K, CHAVDARIAN P R. Designing cold ironing power systems: electrical safety during ship berthing[J]. IEEE Industry Applications Magazine, 2014, 20(3): 24-32. doi: 10.1109/MIAS.2013.2288393
|
[15] |
PENG Yun, LI Xiang-da, WANG Wen-yuan, et al. A method for determining the allocation strategy of on-shore power supply from a green container terminal perspective[J]. Ocean and Coastal Management, 2019, 167: 158-175. doi: 10.1016/j.ocecoaman.2018.10.007
|
[16] |
PENG Yun, LI Xiang-da, WANG Wen-yuan, et al. A method for determining the required power capacity of an on-shore power system considering uncertainties of arriving ships[J]. Sustainability, 2018, 10(12): 4524. doi: 10.3390/su10124524
|
[17] |
DU Yu-quan, CHEN Qiu-shuang, QUAN Xiong-wen, et al. Berth allocation considering fuel consumption and vessel emissions[J]. Transportation Research Part E: Logistics and Transportation Review, 2011, 47(6): 1021-1037. doi: 10.1016/j.tre.2011.05.011
|
[18] |
CHANG C C, JHANG C W. Reducing speed and fuel transfer of the green flag incentive program in Kaohsiung Port Taiwan[J]. Transportation Research Part D: Transport and Environment, 2016, 46: 1-10. doi: 10.1016/j.trd.2016.03.007
|
[19] |
YANG Y C, CHANG W M. Impacts of electric rubber-tired gantries on green port performance[J]. Research in Transportation Business and Management, 2013, 8: 67-76. doi: 10.1016/j.rtbm.2013.04.002
|
[20] |
GEERLINGS H, VAN DUIN R. A new method for assessing CO2-emissions from container terminals: a promising approach applied in Rotterdam[J]. Journal of Cleaner Production, 2011, 19(6/7): 657-666.
|
[21] |
SCHMIDT J, MEYER-BARLAG C, EISEL M, et al. Using battery-electric AGVs in container terminals—assessing the potential and optimizing the economic viability[J]. Research in Transportation Business and Management, 2015, 17: 99-111. doi: 10.1016/j.rtbm.2015.09.002
|
[22] |
HE Jun-liang, HUANG You-fang, YAN Wei. Yard crane scheduling in a container terminal for the trade-off between efficiency and energy consumption[J]. Advanced Engineering Informatics, 2015, 29(1): 59-75. doi: 10.1016/j.aei.2014.09.003
|
[23] |
SHA Mei, ZHANG Tao, LAN Ying, et al. Scheduling optimization of yard cranes with minimal energy consumption at container terminals[J]. Computers and Industrial Engineering, 2017, 113: 704-713. doi: 10.1016/j.cie.2016.03.022
|
[24] |
PENG Yun, WANG Wen-yuan, LIU Ke, et al. The impact of the allocation of facilities on reducing carbon emissions from a green container terminal perspective[J]. Sustainability, 2018, 10(6): 1813. doi: 10.3390/su10061813
|
[25] |
ASTRÖM S, YARAMENKA K, WINNES H, et al. The costs and benefits of a nitrogen emission control area in the Baltic and North Seas[J]. Transportation Research Part D: Transport and Environment, 2018, 59: 223-236. doi: 10.1016/j.trd.2017.12.014
|
[26] |
CHEN Lin-ying, YIP T L, MOU J M. Provision of emission control area and the impact on shipping route choice and ship emissions[J]. Transportation Research Part D: Transport and Environment, 2018, 58: 280-291. doi: 10.1016/j.trd.2017.07.003
|
[27] |
NIKOPOULOU Z. Incremental costs for reduction of air pollution from ships: a case study on North European emission control area[J]. Maritime Policy and Management, 2017, 44(8): 1056-1077. doi: 10.1080/03088839.2017.1342878
|
[28] |
MARTÍNEZ-MOYA J, VAZQUEZ-PAJA B, GIMENEZ MALDONADO J A, et al. Energy efficiency and CO2 emissions of port container terminal equipment: evidence from the port of Valencia[J]. Energy Policy, 2019, 131: 312-319. doi: 10.1016/j.enpol.2019.04.044
|
[29] |
LI Xiang-da, PENG Yun, WANG Wen-yuan, et al. A method for optimizing installation capacity and operation strategy of a hybrid renewable energy system with offshore wind energy for a green container terminal[J]. Ocean Engineering, 2019, 186: 106125. doi: 10.1016/j.oceaneng.2019.106125
|
[30] |
LI Li, ZHU Jia-dong, YE Guan-qiong, et al. Development of green ports with the consideration of coastal wave energy[J]. Sustainability, 2018, 10(11): 4270. doi: 10.3390/su10114270
|
[31] |
HULSKOTTE J H J, VAN DER GON H A C D. Fuel consumption and associated emissions from seagoing ships at berth derived from an on-board survey[J]. Atmospheric Environment, 2010, 44(9): 1229-1236. doi: 10.1016/j.atmosenv.2009.10.018
|
[32] |
International Maritime Organization. Third IMO GHG study 2014—executive summary and final report[R]. London: International Maritime Organization (IMO), 2014.
|
[33] |
罗明汉, 莫斌珍, 黄钦文. LNG燃料动力船舶发展前景[J]. 中国船检, 2019(1): 58-62. doi: 10.3969/j.issn.1009-2005.2019.01.014
LUO Ming-han, MO Bin-zhen, HUANG Qin-wen. Prospects for LNG ships[J]. China Ship Survey, 2019(1): 58-62. (in Chinese) doi: 10.3969/j.issn.1009-2005.2019.01.014
|
[34] |
罗婷婷. LNG动力船舶发展现状与趋势[J]. 中国石油和化工标准与质量, 2018, 38(9): 100-101. doi: 10.3969/j.issn.1673-4076.2018.09.048
LUO Ting-ting. Development status and trend of LNG-powered ships[J]. China Petroleum and Chemical Standards and Quality, 2018, 38(9): 100-101. (in Chinese) doi: 10.3969/j.issn.1673-4076.2018.09.048
|
[35] |
李斌. LNG作为船舶代用燃料的应用分析[J]. 世界海运, 2012, 35(1): 14-16. doi: 10.3969/j.issn.1006-7728.2012.01.006
LI Bin. Application analysis of LNG as ship alternative fuel[J]. World Shipping, 2012, 35(1): 14-16. doi: 10.3969/j.issn.1006-7728.2012.01.006
|
[36] |
BOUMAN E A, LINDSTAD E, RIALLAND A I, et al. State- of-the-art technologies, measures, and potential for reducing GHG emissions from shipping—a review[J]. Transportation Research Part D: Transport and Environment, 2017, 52: 408-421. doi: 10.1016/j.trd.2017.03.022
|
[37] |
WANG Shuai-an, QI Jing-wen, LAPORTE G. Governmental subsidy plan modeling and optimization for liquefied natural gas as fuel for maritime transportation[J]. Transportation Research Part B: Methodological, 2022, 155: 304-321. doi: 10.1016/j.trb.2021.11.003
|
[38] |
ATTAH E E, BUCKNALL R. An analysis of the energy efficiency of LNG ships powering options using the EEDI[J]. Ocean Engineering, 2015, 110: 62-74.
|
[39] |
王欣, 周庆飞, 李彦军. 船舶新能源供电应用技术分析[J]. 硅谷, 2014(4): 103, 93. https://www.cnki.com.cn/Article/CJFDTOTAL-GGYT201404104.htm
WANG Xin, ZHOU Qing-fei, LI Yan-jun. Application technology analysis of ship new energy power supply[J]. Silicon Valley, 2014(4): 103, 93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GGYT201404104.htm
|
[40] |
PHILIPP R. Blockchain for LBG maritime energy contracting and value chain management: a green shipping business model for seaports[J]. Environmental and Climate Technologies, 2020, 24(3): 329-349. doi: 10.2478/rtuect-2020-0107
|
[41] |
EIDE M S, CHRYSSAKIS C, ENDRESEN Ø. CO2 abatement potential towards 2050 for shipping, including alternative fuels[J]. Carbon Management, 2013, 4(3): 275-289. doi: 10.4155/cmt.13.27
|
[42] |
VLEUGEL J M, BAL F. Cleaner fuels to reduce emissions of CO2, NOx and PM10 by container ships: a solution or a pandora's box?[J]. WIT Transactions on Ecology and the Environment, 2015: 199: 195-206.
|
[43] |
MANDER S, WALSH C, GILBERT P, et al. Decarbonizing the UK energy system and the implications for UK shipping[J]. Carbon Management, 2012, 3(6): 601-614. doi: 10.4155/cmt.12.67
|
[44] |
娄喜艳, 丁锦平. 生物质能源发展现状及应用前景[J]. 中国农业文摘-农业工程, 2017, 29(2): 12-14. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNWG201702006.htm
LOU Xi-yan, DING Jin-ping. Biomass energy development present situation and application prospect[J]. Agricultural Science and Engineering in China, 2017, 29(2): 12-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNWG201702006.htm
|
[45] |
谭志文. 新能源在船舶上的应用进展及前景[J]. 海洋科学前沿, 2018, 5(2): 67-71.
TAN Zhi-wen. Application progress and prospect of new energy on ships[J]. Advances in Marine Sciences, 2018, 5(2): 67-71. (in Chinese)
|
[46] |
刘强, 史国强. B20生物柴油调合燃料在海洋船舶上的试用研究[J]. 中国酿造, 2013, 32(增1): 74-76, 81. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGZ2013S1022.htm
LIU Qiang, SHI Guo-qiang. Trial of the B20 biodiesel blend fuel on ocean ship[J]. China Brewing, 2013, 32(S1): 74-76, 81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGZ2013S1022.htm
|
[47] |
李建科, 王金全, 金伟一, 等. 船舶岸电系统研究综述[J]. 船电技术, 2010, 30(10): 12-15. doi: 10.3969/j.issn.1003-4862.2010.10.004
LI Jian-ke, WANG Jin-quan, JIN Wei-yi, et al. A review of shore power system[J]. Marine Electric and Electronic Engineering, 2010, 30(10): 12-15. (in Chinese) doi: 10.3969/j.issn.1003-4862.2010.10.004
|
[48] |
闻铭. 港口船舶岸电的研究与应用[D]. 北京: 华北电力大学, 2017.
WEN Ming. Research andapplication on the port shore-to-ship power supply[D]. Beijing: North China Electric Power University, 2017. (in Chinese)
|
[49] |
贾石岩. 船舶使用岸电对温室气体排放的控制研究[D]. 大连: 大连海事大学, 2009.
JIA Shi-yan. Study of reduction of GHG emission from ships by shore power[D]. Dalian: Dalian Maritime University, 2009. (in Chinese)
|
[50] |
CANNON C, GAO Y, WUNDER L. Port of Los Angeles-Shanghai municipal transportation commission ecopartnership on shore power[J]. Journal of Renewable and Sustainable Energy, 2015, 7: 041507. doi: 10.1063/1.4928175
|
[51] |
SCIBERRAS E A, ZAHAWI B, ATKINSON D, et al. Cold ironing and onshore generation for airborne emission reductions in ports[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2016, 230(1): 67-82. doi: 10.1177/1475090214532451
|
[52] |
ZIS T, NORTH R J, ANGELOUDIS P, et al. Evaluation of cold ironing and speed reduction policies to reduce ship emissions near and at ports[J]. Maritime Economics and Logistics, 2014, 16(4): 371-398. doi: 10.1057/mel.2014.6
|
[53] |
PENG Chuan-sheng. Application of shore power for ocean going vessels at berth in China[C]//SEEIE. 2016 International Conference on Sustainable Energy, Environment and Information Engineering. Netherlands: Atlantis Press, 2016: 1-15.
|
[54] |
SIFAKIS N, VICHOS E, SMARAGDAKIS A, et al. Introducing the cold-ironing technique and a hydrogen-based hybrid renewable energy system into ports[J]. International Journal of Energy Research, 2022, DOI: 10.1002/er.8059.
|
[55] |
WU Ling-xiao, WANG Shuai-an. The shore power deployment problem for maritime transportation[J]. Transportation Research Part E: Logistics and Transportation Review, 2020, 135: 101883. doi: 10.1016/j.tre.2020.101883
|
[56] |
WANG Yu-bing, DING Wen-yi, DAI Lei, et al. How would government subsidize the port on shore side electricity usage improvement?[J]. Journal of Cleaner Production, 2021, 278: 123893. doi: 10.1016/j.jclepro.2020.123893
|
[57] |
LI Xiao-dong, KUANG Hai-bo, HU Yan. Using system dynamics and game model to estimate optimal subsidy in shore power technology[J]. IEEE Access, 2020, 8: 116310-116320. doi: 10.1109/ACCESS.2020.3004183
|
[58] |
DAI Lei, HU Hao, WANG Zhao-jing, et al. An environmental and techno-economic analysis of shore side electricity[J]. Transportation Research Part D: Transport and Environment, 2019, 75: 223-235. doi: 10.1016/j.trd.2019.09.002
|
[59] |
周海英, 张文静. 绿色港口建设下港口与船舶减排决策研究[J]. 科技管理研究, 2022, 42(7): 205-214. https://www.cnki.com.cn/Article/CJFDTOTAL-KJGL202207025.htm
ZHOU Hai-ying, ZHANG Wen-jing. Research on emission reduction decisions of port and ship under the construction of green ports[J]. Science and Technology Management Research, 2022, 42(7): 205-214. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJGL202207025.htm
|
[60] |
COPPOLA T, FANTAUZZI M, LAURIA D, et al. A sustainable electrical interface to mitigate emissions due to power supply in ports[J]. Renewable and Sustainable Energy Reviews, 2016, 54: 816-823. doi: 10.1016/j.rser.2015.10.107
|
[61] |
TARNAPOWICS D. Synchronization of national grid network with the electricity ships network in the "shore to ship" system[J]. Management Systems in Production Engineering, 2013, 3(11): 9-13.
|
[62] |
WINKEL R, WEDDIGE U, JOHNSEN D, et al. Shore side electricity in Europe: potential and environmental benefits[J]. Energy Policy, 2016, 88: 584-593. doi: 10.1016/j.enpol.2015.07.013
|
[63] |
PENG Yun, DONG Meng, LI Xiang-da, et al. Cooperative optimization of shore power allocation and berth allocation: a balance between cost and environmental benefit[J]. Journal of Cleaner Production, 2021, 279: 123816. doi: 10.1016/j.jclepro.2020.123816
|
[64] |
DAI Lei, HU Hao, WANG Zhao-jing. Is shore side electricity greener? An environmental analysis and policy implications[J]. Energy Policy, 2020, 137: 111144. doi: 10.1016/j.enpol.2019.111144
|
[65] |
ACCIARO M, GHIARA H, CUSANO M I. Energy management in seaports: a new role for port authorities[J]. Energy Policy, 2014, 71(3): 4-12.
|
[66] |
LAN Hai, WEN Shu-li, HONG Ying-yi, et al. Optimal sizing of hybrid PV/diesel/battery in ship power system[J]. Applied Energy, 2015, 158: 26-34. doi: 10.1016/j.apenergy.2015.08.031
|
[67] |
TANG Ruo-li, LI Xin, LAI Jin-gang. A novel optimal energy-management strategy for a maritime hybrid energy system based on large-scale global optimization[J]. Applied Energy, 2018, 228: 254-264. doi: 10.1016/j.apenergy.2018.06.092
|
[68] |
YUAN Yu-peng, WANG Ji-xiang, YAN Xin-ping, et al. A design and experimental investigation of a large-scale solar energy/diesel generator powered hybrid ship[J]. Energy, 2018, 165: 965-978. doi: 10.1016/j.energy.2018.09.085
|
[69] |
TANG Ruo-li, WU Zhou, LI Xin. Optimal operation of photovoltaic/battery/diesel/cold-ironing hybrid energy system for maritime application[J]. Energy, 2018, 162: 697-714. doi: 10.1016/j.energy.2018.08.048
|
[70] |
KUMAR J, KUMPULAINEN L, KAUHANIEMI K. Technical design aspects of harbour area grid for shore to ship power: state of the art and future solutions[J]. International Journal of Electrical Power and Energy Systems, 2019, 104: 840-852. doi: 10.1016/j.ijepes.2018.07.051
|
[71] |
KALIKATZARAKIS M, GEERTSMA R D, BOONEN E J, et al. Ship energy management for hybrid propulsion and power supply with shore charging[J]. Control Engineering Practice, 2018, 76: 133-154. doi: 10.1016/j.conengprac.2018.04.009
|
[72] |
YIGIT K, ACARKAN B. A new electrical energy management approach for ships using mixed energy sources to ensure sustainable port cities[J]. Sustainable Cities and Society, 2018, 40: 126-135. doi: 10.1016/j.scs.2018.04.004
|
[73] |
RAILEANU A B, ONEA F, RUSU E. Implementation of offshore wind turbines to reduce air pollution in coastal areas—case study constanta harbour in the black sea[J]. Journal of Marine Science and Engineering, 2020, 8(8): 550. doi: 10.3390/jmse8080550
|
[74] |
SEDDIEK I S. Application of renewable energy technologies for eco-friendly sea ports[J]. Ships and Offshore Structures, 2020, 15(9): 953-962. doi: 10.1080/17445302.2019.1696535
|
[75] |
GUTIERREZ-ROMERO J E, ESTEVE-PÉREZ J, ZAMORA B. Implementing onshore power supply from renewable energy sources for requirements of ships at berth[J]. Applied Energy, 2019, 255: 113883. doi: 10.1016/j.apenergy.2019.113883
|
[76] |
SADEK I, ELGOHARY M. Assessment of renewable energy supply for green ports with a case study[J]. Environmental Science and Pollution Research, 2020, 27(5): 5547-5558. doi: 10.1007/s11356-019-07150-2
|
[77] |
AHAMAD N B, OTHMAN M, VASQUEZ J C, et al. Optimal sizing and performance evaluation of a renewable energy based microgrid in future seaports[C]//IEEE. 2018 IEEE International Conference on Industrial Technology (ICIT). New York: IEEE, 2018: 1043-1048.
|
[78] |
WANG Wen-yuan, PENG Yun, LI Xiang-da, et al. A two-stage framework for the optimal design of a hybrid renewable energy system for port application[J]. Ocean Engineering, 2019, 191: 106555. doi: 10.1016/j.oceaneng.2019.106555
|
[79] |
MISRA A, VENKATARAMANI G, GOWRISHANKAR S, et al. Renewable energy based smart microgrids—a pathway to green port development[J]. Strategic Planning for Energy and the Environment, 2017, 37(2): 17-32. doi: 10.1080/10485236.2017.11907880
|
[80] |
黄逸文, 黄文焘, 卫卫, 等. 大型海港综合能源系统物流-能量协同优化调度方法[J]. 中国电机工程学报, 2021, DOI: 10.13334/j.0258-8013.pcsee.211093.
HUANG Yi-wen, HUANG Wen-tao, WEI Wei, et al. Logistics-energy collaborative optimization scheduling method for large seaport integrated energy system[J]. Proceedings of the CSEE, 2021, DOI: 10.13334/j.0258-8013.pcsee.211093.(inChinese)
|
[81] |
FANG Si-dun, WANG Chen-xu, LIAO Rui-jin, et al. Optimal power scheduling of seaport microgrids with flexible logistic loads[J]. IET Renewable Power Generation, 2022, DOI: 10.1049/rpg2.1240.
|
[82] |
CORBETT J J, WANG Hai-feng, WINEBRAKE J J. The effectiveness and costs of speed reductions on emissions from international shipping[J]. Transportation Research Part D: Transport and Environment, 2009, 14(8): 593-598. doi: 10.1016/j.trd.2009.08.005
|
[83] |
CHANG C C, WANG C M. Evaluating the effects of speed reduce for shipping costs and CO2 emission[J]. Transportation Research Part D: Transport and Environment, 2014, 31: 110-115. doi: 10.1016/j.trd.2014.05.020
|
[84] |
SMITH T W P. Technical energy efficiency, its interaction with optimal operating speeds and the implications for the management of shipping's carbon emissions[J]. Carbon Management, 2012, 3(6): 589-600. doi: 10.4155/cmt.12.58
|
[85] |
FAGERHOLT K, LAPORTE G, NORSTAD I. Reducing fuel emissions by optimizing speed on shipping routes[J]. Journal of the Operational Research Society, 2010, 61(3): 523-529. doi: 10.1057/jors.2009.77
|
[86] |
KAO Sheng-long, LIN Jia-lin, TU Meng-ru. Utilizing the fuzzy loT to reduce Green Harbor emissions[J]. Journal of Ambient Intelligence and Humanized Computing, 2020, DOI: https://doi.org/10.1007/s12652-020-01844-z
|
[87] |
JOHNSON H, STYHRE L. Increased energy efficiency in short sea shipping through decreased time in port[J]. Transportation Research Part A: Policy and Practice, 2015, 71: 167-178. doi: 10.1016/j.tra.2014.11.008
|
[88] |
OKADA A. Benefit, cost, and size of an emission control area: a simulation approach for spatial relationships[J]. Maritime Policy and Management, 2019, 46(5): 565-584. doi: 10.1080/03088839.2019.1579931
|
[89] |
CULLINANE K, BERGQVIST R. Emission control areas and their impact on maritime transport[J]. Transportation Research Part D: Transport and Environment, 2014, 28: 1-5. doi: 10.1016/j.trd.2013.12.004
|
[90] |
LACK D A, CAPPA C D, LANGRIDGE J, et al. Impact of fuel quality regulation and speed reductions on shipping emissions: implications for climate and air quality[J]. Environmental Science and Technology, 2011, 45(20): 9052-9060. doi: 10.1021/es2013424
|
[91] |
王坚, 黄厔, 陈森阳, 等. 厦门船舶控制区(绿色港口)大气污染物减排成效评估[J]. 海峡科学, 2021(1): 22-28. doi: 10.3969/j.issn.1673-8683.2021.01.006
WANG Jian, HUANG Zhi, CHEN Sen-yang, et al. Evaluation on the effectiveness of air pollutant emission reduction in ship control area (green port) in Xiamen[J]. Straits Science, 2021(1): 22-28. (in Chinese) doi: 10.3969/j.issn.1673-8683.2021.01.006
|
[92] |
YE G, ZHOU J, YIN W, et al. Are shore power and emission control area policies always effective together for pollutant emission reduction? —An analysis of their joint impacts at the post-pandemic era[J]. Ocean and Coastal Management, 2022, 224: 106182. doi: 10.1016/j.ocecoaman.2022.106182
|
[93] |
WAN Zheng, ZHANG Qiang, XU Zhi-ping, et al. Impact of emission control areas on atmospheric pollutant emissions from major ocean-going ships entering the Shanghai Port, China[J]. Marine Pollution Bulletin, 2019, 142: 525-532. doi: 10.1016/j.marpolbul.2019.03.053
|
[94] |
QIN Ze-ru, YIN Jing-bo, CAO Zhi-qiang. Evaluation of effects of ship emissions control areas case study of Shanghai Port in China[J]. Journal of the Transportation Research Board, 2017, 2611(1): 50-55. doi: 10.3141/2611-06
|
[95] |
闫伟. 船舶"排放控制区"的划定及应对分析[J]. 广东交通职业技术学院学报, 2016, 15(4): 44-46, 64. doi: 10.3969/j.issn.1671-8496.2016.04.010
YAN Wei. Delineation of ECA and corresponding measures[J]. Journal of Guangdong Communication Polytechnic, 2016, 15(4): 44-46, 64. (in Chinese) doi: 10.3969/j.issn.1671-8496.2016.04.010
|
[96] |
刘新亮. 船舶排放控制区(ECA)与船舶进入ECA区域的措施[J]. 珠江水运, 2017(5): 57-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSI201710026.htm
LIU Xin-liang. Vessel emission control zone (ECA) and measures for vessels entering ECA zone[J]. Pearl River Water Transport, 2017(5): 57-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZJSI201710026.htm
|
[97] |
CHANG Y T, PARK H, LEE S, et al. Have emission control areas (ECAs) harmed port efficiency in Europe?[J]. Transportation Research Part D: Transport and Environment, 2018, 58: 39-53. doi: 10.1016/j.trd.2017.10.018
|
[98] |
纪天平. 龙门吊油改电项目电力电气设计[J]. 设备管理与维修, 2020(11): 83-85. https://www.cnki.com.cn/Article/CJFDTOTAL-SBGX202011040.htm
JI Tian-ping. Electric power design of gantry crane oil-to- electricity project[J]. Plant Maintenance Engineering, 2020(11): 83-85. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SBGX202011040.htm
|
[99] |
DING Yi, YANG Yang, HEILIG L, et al. Deployment and retrofit strategy for rubber-tyred gantry cranes considering carbon emissions[J]. Computers and Industrial Engineering, 2021, 161: 107645. doi: 10.1016/j.cie.2021.107645
|
[100] |
IRIS Ç, LAM J S L. A review of energy efficiency in ports: operational strategies, technologies and energy management systems[J]. Renewable and Sustainable Energy Reviews, 2019, 112: 170-182. doi: 10.1016/j.rser.2019.04.069
|
[101] |
KIM S M, SUL S K. Control of rubber tyred gantry crane with energy storage based on supercapacitor bank[J]. IEEE Transactions on Power Electronics, 2006, 21(5): 1420-1427. doi: 10.1109/TPEL.2006.880260
|
[102] |
ANTONELLI M, CERAOLO M, DESIDERI U, et al. Hybridization of rubber tired gantry (RTG) cranes[J]. Journal of Energy Storage, 2017, 12: 186-195. doi: 10.1016/j.est.2017.05.004
|
[103] |
NIU Wang-qiang, HUANG Xi-xia, YUAN Feng, et al. Sizing of energy system of a hybrid lithium battery RTG crane[J]. IEEE Transactions on Power Electronics, 2017, 32(10): 7837-7844. doi: 10.1109/TPEL.2016.2632202
|
[104] |
FLYNN M M, MCMULLEN P, SOLIS O. Saving energy using flywheels[J]. IEEE Industry Applications Magazine, 2008, 14(6): 69-76. doi: 10.1109/MIAS.2008.929351
|
[105] |
TAN K H, YAP F F. Reducing fuel consumption using flywheel battery technology for rubber tyred gantry cranes in container terminals[J]. Journal of Power and Energy Engineering, 2017, 5(7): 15-33. doi: 10.4236/jpee.2017.57002
|
[106] |
PAPAIOANNOU V, PIETROSANTI S, HOLDERBAUM W, et al. Analysis of energy usage for RTG cranes[J]. Energy, 2017, 125: 337-344. doi: 10.1016/j.energy.2017.02.122
|
[107] |
严俊, 陈振宇. 自动化无人空箱堆场轨道式龙门起重机节能照明系统改造[J]. 集装箱化, 2014(9): 11-13. doi: 10.3969/j.issn.1005-5339.2014.09.006
YAN Jun, CHEN Zhen-yu. Renovation of energy-saving lighting system for track gantry crane in automatic unmanned empty box stacking yard[J]. Containerization, 2014(9): 11-13. (in Chinese) doi: 10.3969/j.issn.1005-5339.2014.09.006
|
[108] |
CHANG Dao-fang, FANG Ting, HE Jun-liang, et al. Defining scheduling problems for key resources in energy-efficient port service systems[J]. Scientific Programming, 2016, 2016: 7053962.
|
[109] |
崔维伟, 镇璐. 峰值电量约束下的场桥能耗最小化问题研究[J]. 系统工程理论与实践, 2021, 41(2): 358-369. https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL202102009.htm
CUI Wei-wei, ZHEN Lu. Minimizing the total energy consumption of yard crane under the peak demand constraint[J]. Systems Engineering—Theory and Practice, 2021, 41(2): 358-369. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTLL202102009.htm
|
[110] |
CHEN Su-min, ZENG Qing-cheng. Carbon-efficient scheduling problem of electric rubber-tyred gantry cranes in a container terminal[J]. Engineering Optimization, 2021, DOI: 10.1080/0305215X.2021.1972293.
|
[111] |
ZHANG Qian, WANG Shuai-an, ZHEN Lu. Yard truck retrofitting and deployment for hazardous material transportation in green ports[J]. Annals of Operations Research, 2022, DOI: 10.1007/s10479-021-04507-0.
|
[112] |
陶学宗, 张秀芝. 宁波港域内集卡"油改气"减排节支效果评价[J]. 集装箱化, 2018(11): 1-3. https://www.cnki.com.cn/Article/CJFDTOTAL-JZXH201811002.htm
TAO Xue-zong, ZHANG Xiu-zhi. Effectiveness evaluation of reducing emission and saving expenditure of "oil to gas" in Ningbo Port area[J]. Containerization, 2018(11): 1-3. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZXH201811002.htm
|
[113] |
ESMER S, CETI I B, TUNA O. A simulation for optimum terminal truck number in a Turkish port based on lean and green concept[J]. The Asian Journal of Shipping and Logistics, 2010, 26(2): 277-296.
|
[114] |
LI Na, CHEN Gang, GOVINDAR K, et al. Disruption management for truck appointment system at a container terminal: a green initiative[J]. Transportation Research Part D: Transport and Environment, 2018, 61: 261-273.
|
[115] |
CHEN Gang, GOVINDAN K, GOLIAS M M, et al. Reducing truck emissions at container terminals in a low carbon economy: proposal of a queueing-based bi-objective model for optimizing truck arrival pattern[J]. Transportation Research Part E: Logistics and Transportation Review, 2013, 55: 3-22.
|
[116] |
SCHULTE F, LALLA-RUIZ E, GONZÁLEZ-RAMÍRES R G, et al. Reducing port-related empty truck emissions: a mathematical approach for truck appointments with collaboration[J]. Transportation Research Part E: Logistics and Transportation Review, 2017, 105: 195-212.
|
[117] |
YANG Y C. Operating strategies of CO2 reduction for a container terminal based on carbon footprint perspective[J]. Journal of Cleaner Production, 2017, 141: 472-480.
|
[118] |
彭云. 不确定条件下低碳型港口资源优化配置研究[D]. 大连: 大连理工大学, 2016.
PENG Yun. The research on the optimal allocation of low-carbon seaport resources under uncertainties[D]. Dalian: Dalian University of Technology, 2016. (in Chinese)
|
[119] |
谷长华, 丛悦磊. 岸桥节能降耗技术改造[J]. 集装箱化, 2014, 25(6): 26-28. https://www.cnki.com.cn/Article/CJFDTOTAL-JZXH201406011.htm
GU Chang-hua, CONG Yue-lei. Technical reform of energy saving and consumption reduction of quayside bridge[J]. Containerization, 2014, 25(6): 26-28. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZXH201406011.htm
|
[120] |
TRAN T K. Study of electrical usage and demand at the container terminal[D]. Melbourne: Deakin University, 2012.
|
[121] |
XIAO Xin-yi, LU Shi-qing. Study on measurement of energy consumption for cranes and designing of energy saving device[J]. Applied Mechanics and Materials, 2012, 159: 326-330.
|
[122] |
CHANG Dao-fang, JIANG Zu-hua, YAN Wei, et al. Integrating berth allocation and quay crane assignments[J]. Transportation Research Part E: Logistics and Transportation Review, 2010, 46(6): 975-990.
|
[123] |
WANG Ting-song, DU Yu-quan, FANG De-bin, et al. Berth allocation and quay crane assignment for the trade-off between service efficiency and operating cost considering carbon emission taxation[J]. Transportation Science, 2020, 54(5): 1307-1331.
|
[124] |
ZHEN Lu, SUN Qian, ZHANG Wei, et al. Column generation for low carbon berth allocation under uncertainty[J]. Journal of the Operational Research Society, 2021, 72(10): 2225-2240.
|
[125] |
WANG Wen-yuan, PENG Yun, TANG Guo-lei, et al. Influence of carbon emission constraint on container quay crane allocation[J]. Advanced Materials Research, 2013, 807-809: 936-940.
|
[126] |
LIU Ding, GE Ying-en. Modeling assignment of quay cranes using queueing theory for minimizing CO2 emission at a container terminal[J]. Transportation Research Part D: Transport and Environment, 2018, 61: 140-151.
|
[127] |
张煜, 唐可心, 徐亚军, 等. 考虑能耗节约的集装箱码头装卸设备集成调度[J]. 计算机集成制造系统, 2022, https://kns.cnki.net/kcms/detail/11.5946.tp.20220328.1708.015.html. https://kns.cnki.net/kcms/detail/11.5946.tp.20220328.1708.015.html
ZHANG Yu, TANG Ke-xin, XU Ya-jun, et al. Integrated scheduling of handling operations in container terminal with considering energy saving[J]. Computer Integrated Manufacturing Systems, 2022, https://kns.cnki.net/kcms/detail/11.5946.tp.20220328.1708.015.html. (in Chinese) https://kns.cnki.net/kcms/detail/11.5946.tp.20220328.1708.015.html
|
[128] |
YU Jing-jing, VOß S, SONG Xiang-qun. Multi-objective optimization of daily use of shore side electricity integrated with quayside operation[J]. Journal of Cleaner Production, 2022, 351: 131406.
|
[129] |
KENAN N, JEBALI A, DIABAT A. The integrated quay crane assignment and scheduling problems with carbon emissions considerations[J]. Computersand Industrial Engineering, 2022, 165: 107734.
|
[130] |
GEERLINGS H, HEIJ R, VAN DUIN R. Opportunities for peak shaving the energy demand of ship-to-shore quay cranes at container terminals[J]. Journal of Shipping and Trade, 2018, 3: 3.
|