Volume 22 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
XU Xiao-jian, YANG Rui, JI Yong-bo, ZHANG Xin-yu, JIANG Lei, LI Kun. Review on key technologies of hydrogen fuel cell powered vessels[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 47-67. doi: 10.19818/j.cnki.1671-1637.2022.04.004
Citation: XU Xiao-jian, YANG Rui, JI Yong-bo, ZHANG Xin-yu, JIANG Lei, LI Kun. Review on key technologies of hydrogen fuel cell powered vessels[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 47-67. doi: 10.19818/j.cnki.1671-1637.2022.04.004

Review on key technologies of hydrogen fuel cell powered vessels

doi: 10.19818/j.cnki.1671-1637.2022.04.004
More Information
  • Author Bio:

    XU Xiao-jian(1988-), female, postdoctoral researcher, xuxiaojian@wti.ac.cn

    YANG Rui(1979-), male, researcher, yangr@wti.ac.cn

    JI Yong-bo(1975-), male, researcher, jyb@wti.ac.cn

  • Received Date: 2022-02-19
    Available Online: 2022-10-08
  • Publish Date: 2022-08-25
  • Existing hydrogen fuel powered vessel types in the world were listed, and their characteristics were summarized. The research progress in the key technologies of hydrogen fuel cell powered vessels was analyzed in terms of standard specifications, power source, hydrogen production, hydrogen storage, and hydrogen safety. According to the navigation environment, structure, and operating condition of vessel, the challenges in the key technologies of hydrogen fuel cell powered vessels and the measures to deal with these challenges were proposed. Analysis results show that at present, the number of hydrogen fuel powered vessels in the world is limited. Most of them are small passenger vessels in inland rivers and lakes and are fueled mainly by hydrogen cells. The hydrogen is mostly stored in gas cylinders with high pressure of 35 MPa. The relevant standard specifications for hydrogen fuel cell powered vessels are still being formulated, and the standards and specifications for the building, testing, and application of vehicles fueled by hydrogen cells can be taken as references. Proton exchange membrane fuel cells (PEMFCs) are the most widely used hydrogen fuel cells. Catalyst, bipolar plate, membrane electrode, and sealing material all have important impacts on the performance of PEMFC. In order to increase the applicability of hydrogen fuel cells for vessels, it is suggested to develop high-power fuel cell modules, and the environmental suitability of fuel cells should be studied under the conditions of humidity, heat, salt spray, tilt, and swing. Currently, hydrogen production industries in China still focus on hydrogen production by coals, and it is necessary to produce hydrogen with renewable energy. In short term, compressed hydrogen is the most feasible way for hydrogen storage on board. Light and pressure-resistant storage tanks with high storage density should be developed to improve hydrogen storage density and safety. Furthermore, in order to ensure the safety of vehicles fueled by hydrogen cells, qualitative and quantitative risk analysis methods should be comprehensively utilized to identify risky scenarios, analyze the laws of development and consequence of leakage, diffusion, combustion and explosion of hydrogen by simulation, evaluate the risks, and propose risk mitigation measures.

     

  • loading
  • [1]
    International Marine Organization. Fourth IMOGHG study 2020 executive summary[R]. London: International Marine Organization, 2021.
    [2]
    胡琼, 周伟新, 刁峰. IMO船舶温室气体减排初步战略解读[J]. 中国造船, 2019, 60(1): 195-201. doi: 10.3969/j.issn.1000-4882.2019.01.019

    HU Qiong, ZHOU Wei-xin, DIAO Feng. Interpretation of initial IMO strategy on reduction of GHG emissions from ships[J]. Shipbuilding of China, 2019, 60(1): 195-201. (in Chinese) doi: 10.3969/j.issn.1000-4882.2019.01.019
    [3]
    BRYNOLF S, MAGNUSSON M, FRIDELL E, et al. Compliance possibilities for the future ECA regulations through the use of abatement technologies or change of fuels[J]. Transportation Research Part D: Transport and Environment, 2014, 28: 6-18. doi: 10.1016/j.trd.2013.12.001
    [4]
    王思佳. 2020年, 航运减排竞赛年[J]. 中国船检, 2019(12): 16-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ201912008.htm

    WANG Si-jia. 2020, the year of racing for shipping emission reduction[J]. China Ship Survey, 2019(12): 16-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGCJ201912008.htm
    [5]
    张永伟, 张真, 苗乃乾, 等. 中国氢能产业发展报2020[R]. 北京: 中国电动汽车百人会, 2020.

    ZHANG Yong-wei, ZHANG Zhen, MIAO Nai-qian, et al. Report on hydrogen energy industry development of China 2020[R]. Beijing: China EV 100, 2020. (in Chinese)
    [6]
    符冠云, 赵吉诗, 龚娟, 等. 2019年国内外氢能发展形势回顾及展望[J]. 中国能源, 2020, 42(3): 30-33. doi: 10.3969/j.issn.1003-2355.2020.03.006

    FU Guan-yun, ZHAO Ji-shi, GONG Juan, et al. Review and prospect on hydrogen energy development at home and abroad in 2019[J]. Energy of China, 2020, 42(3): 30-33. (in Chinese) doi: 10.3969/j.issn.1003-2355.2020.03.006
    [7]
    马宇坤, 张勤杰, 赵俊杰. 船舶行业"氢"装上阵之路有多远[J]. 船舶物资与市场, 2019(3): 14-16. https://www.cnki.com.cn/Article/CJFDTOTAL-CBWZ201903011.htm

    MA Yu-kun, ZHANG Qin-jie, ZHAO Jun-jie. How far is the way to use hydrogen in shipping industry[J]. Marine Equipment/Materials and Marketing, 2019(3): 14-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CBWZ201903011.htm
    [8]
    朱子文. MOFs储氢应用于船舶燃料电池电力推进系统的研究[D]. 厦门: 集美大学, 2019.

    ZHU Zi-wen. Research on the application of MOFs as hydrogen storage materials in fuel cell electric propulsion system for ships[D]. Xiamen: Jimei University, 2019. (in Chinese)
    [9]
    于全虎. 氢能和燃料电池及其船舶应用进展[J]. 船舶, 2020, 31(5): 69-76. https://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ202005013.htm

    YU Quan-hu. Hydrogen, fuel cells and their application on ship[J]. Ship and Boat, 2020, 31(5): 69-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CBZZ202005013.htm
    [10]
    徐自亮, 余英, 李力. 氢燃料电池应用进展[J]. 中国基础科学, 2018, 20(2): 7-17. doi: 10.3969/j.issn.1009-2412.2018.02.002

    XU Zi-liang, YU Ying, LI Li. Latest progress of hydrogen fuel cell's applications[J]. China Basic Science, 2018, 20(2): 7-17. (in Chinese) doi: 10.3969/j.issn.1009-2412.2018.02.002
    [11]
    PRATT J W, KLEBANOFF L E. Optimization of zero emission hydrogen fuel cell ferry design, with comparisons to the SF-BREEZE[R]. Albuquerque: Sandia National Laboratories, 2018.
    [12]
    American Bureau of Shipping. Guide for fuel cell power systems for marine and offshore applications[R]. New York: American Bureau of Shipping, 2019.
    [13]
    ALVESTAD L, BERGE K. Handbook for hydrogen-fuelled vessels[R]. Oslo: DNV, 2021.
    [14]
    罗肖锋, 吴顺平, 雷伟, 等. 船舶能源低碳发展趋势及路径[J]. 中国远洋海运, 2021(3): 46-51. doi: 10.3969/j.issn.1673-6664.2021.03.013

    LUO Xiao-feng, WU Shun-ping, LEI Wei, et al. Low-carbon development trend and path of ship energy[J]. Maritime China, 2021(3): 46-51. (in Chinese) doi: 10.3969/j.issn.1673-6664.2021.03.013
    [15]
    王思佳. CCS助力氢能上船提速[J]. 中国船检, 2020, 245(9): 15-18. doi: 10.3969/j.issn.1009-2005.2020.09.007

    WANG Si-jia. CCS promotes the application of hydrogen on ships[J]. China Ship Survey, 2020, 245(9): 15-18. (in Chinese) doi: 10.3969/j.issn.1009-2005.2020.09.007
    [16]
    黄兴, 丁天威, 赵洪辉, 等. 车用燃料电池系统氢安全控制综述[J]. 汽车文摘, 2019, 519(4): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-QCWZ201904003.htm

    HUANG Xing, DING Tian-wei, ZHAO Hong-hui, et al. A review of hydrogen safety control for automotive fuel cell systems[J]. Automotive Digest, 2019, 519(4): 6-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCWZ201904003.htm
    [17]
    马秋玉, 赵子亮, 赵洪辉, 等. 燃料电池行业标准现状综述[J]. 汽车文摘, 2020(1): 14-17. https://www.cnki.com.cn/Article/CJFDTOTAL-QCWZ202001005.htm

    MA Qiu-yu, ZHAO Zi-liang, ZHAO Hong-hui, et al. Overview on the present situation of fuel cell industry standards[J]. Automotive Digest, 2020(1): 14-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCWZ202001005.htm
    [18]
    WHITE C M, STEEPER R R, LUTZ A E. The hydrogen-fueled internal combustion engine: a technical review[J]. International Journal of Hydrogen Energy, 2006, 31(10): 1292-1305. doi: 10.1016/j.ijhydene.2005.12.001
    [19]
    温术来. 燃料电池的研究现状及进展[J]. 现代化工, 2019, 39(7): 66-70. https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG201907014.htm

    WEN Shu-lai. Research status and progress of fuel cell[J]. Modern Chemical Industry, 2019, 39(7): 66-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDHG201907014.htm
    [20]
    程一步. 氢燃料电池技术应用现状及发展趋势分析[J]. 石油石化绿色低碳, 2018, 3(2): 5-13. doi: 10.3969/j.issn.2095-0942.2018.02.002

    CHENG Yi-bu. Application status and development trend analysis of hydrogen fuel cell technology[J]. Green Petroleumand Petrochemicals, 2018, 3(2): 5-13. (in Chinese) doi: 10.3969/j.issn.2095-0942.2018.02.002
    [21]
    侯明, 衣宝廉. 燃料电池技术发展现状与展望[J]. 电化学, 2012, 18(1): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-DHXX201201002.htm

    HOU Ming, YI Bao-lian. Progress and perspective of fuel cell technology[J]. Journal of Electrochemistry, 2012, 18(1): 1-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DHXX201201002.htm
    [22]
    冯娟. 船用动力氢燃料电池性能优化研究[D]. 镇江: 江苏科技大学, 2018.

    FENG Juan. Performance optimization of marine hydrogen fuel cell[D]. Zhenjiang: Jiangsu University of Science and Technology, 2018. (in Chinese)
    [23]
    TRONSTAD T, ÅSTRAND H H, HAUGOM G P, et al. Study on the use of fuel cells in shipping[R]. Oslo: DNV, 2017.
    [24]
    XING H, STUART C, SPENCE S, et al. Fuel cell power systems for maritime applications: progress and perspectives[J]. Sustainability, 2021, 13(3): 1213. doi: 10.3390/su13031213
    [25]
    SHAO Min-hua, PELES A, SHOEMAKER K. Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reactionactivity[J]. Nano Letters, 2011, 11(9): 3714-3719. doi: 10.1021/nl2017459
    [26]
    LIU Sheng-chu, LI Shang, WANG Ru-yi, et al. Preparation of high performance and ultra-low platinum loading membrane electrode assembly for PEMFC commercial application[J]. Journal of the Electrochemical Society, 2019, 166(16): 1308-1313. doi: 10.1149/2.0151916jes
    [27]
    ERCOLANO G, CAVALIERE S, ROZIōRE J, et al. Recent developments in electrocatalyst design thrifting noble metals in fuel cells[J]. Current Opinion in Electrochemistry, 2018, 9: 271-277. doi: 10.1016/j.coelec.2018.05.019
    [28]
    何大平, 木士春. 质子交换膜燃料电池铂电催化剂的稳定策略[J]. 电化学, 2018, 24(6): 655-663. https://www.cnki.com.cn/Article/CJFDTOTAL-DHXX201806008.htm

    HE Da-ping, MU Shi-chun. Stabilization strategies of Pt catalysts for proton exchange membrane fuel cells[J]. Journal of Electrochemistry, 2018, 24(6): 655-663. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DHXX201806008.htm
    [29]
    侯明, 邵志刚, 俞红梅, 等. 2019年氢燃料电池研发热点回眸[J]. 科技导报, 2020, 38(1): 137-150. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB202001015.htm

    HOU Ming, SHAO Zhi-gang, YU Hong-mei, et al. Review of hot topics on hydrogen fuel cell in 2019[J]. Science and Technology Review, 2020, 38(1): 137-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB202001015.htm
    [30]
    毛韬博, 栾伟玲, 付青青. 聚苯胺基涂层在质子交换膜燃料电池金属双极板上的应用进展[J]. 化工进展, 2021, 40(7): 3826-3836. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202107027.htm

    MAO Tao-bo, LUAN Wei-ling, FU Qing-qing. Recent progress on polyaniline-based coatings on bipolar plates of proton exchange membrane fuel cells[J]. Chemical Industry and Engineering Progress, 2021, 40(7): 3826-3836. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202107027.htm
    [31]
    王科. 质子交换膜燃料电池双极板流场的研究[D]. 南京: 南京航空航天大学, 2007.

    WANG Ke. Research on flow field on bipolar plates for proton exchange membrane fuel cell[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2007. (in Chinese)
    [32]
    刘海超. 质子交换膜燃料电池流道设计与流体管理[D]. 北京: 北京化工大学, 2018.

    LIU Hai-chao. Design of flow channel and research on fluid management in proton exchange membrane fuel cells[D]. Beijing: Beijing University of Chemical Technology, 2018. (in Chinese)
    [33]
    王伟, 吴旨玉, 董宗玉, 等. 硅橡胶密封垫的应力弛豫特性[J]. 润滑与密封, 2004, 29(2): 27-28, 30. doi: 10.3969/j.issn.0254-0150.2004.02.011

    WANG Wei, WU Zhi-yu, DONG Zong-yu, et al. Stress relaxation properties of the silicone rubber gasket[J]. Lubrication Engineering, 2004, 29(2): 27-28, 30. (in Chinese) doi: 10.3969/j.issn.0254-0150.2004.02.011
    [34]
    CUI T, CHAO Y J, CHEN X M, et al. Effect of water on life prediction of liquid silicone rubber seals in polymer electrolyte membrane fuel cell[J]. Journal of Power Sources, 2011, 196(22): 9536-9543. doi: 10.1016/j.jpowsour.2011.07.066
    [35]
    DAI Wei, WANG Hai-jiang, YUAN Xiao-zi, et al. A review on water balance in the membrane electrode assembly of proton exchange membrane fuel cells[J]. International Journal of Hydrogen Energy, 2009, 34(23): 9461-9478. doi: 10.1016/j.ijhydene.2009.09.017
    [36]
    VAN BIERT L, GODJEVAC M, VISSER K, et al. A review of fuel cell systems for maritime applications[J]. Journal of Power Sources, 2016, 327(30): 345-364.
    [37]
    刘易明, 王甫, 王珺, 等. 燃料电池船舶应用形式及其关键技术[J]. 船舶工程, 2021, 43(3): 18-26, 33. https://www.cnki.com.cn/Article/CJFDTOTAL-CANB202103004.htm

    LIU Yi-ming, WANG Fu, WANG Jun, et al. Application form and its key technology of fuel cell ship[J]. Ship Engineering, 2021, 43(3): 18-26, 33. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CANB202103004.htm
    [38]
    CHOI C H, YU S J, HAN I S, et al. Development and demonstration of PEM fuel-cell-battery hybrid system for propulsion of tourist boat[J]. International Journal of Hydrogen Energy, 2016, 41(5): 3591-3599. doi: 10.1016/j.ijhydene.2015.12.186
    [39]
    李鸿瑞, 熊良胜, 邵诗逸. 直流电力推进系统在小水线面双体科考船上的应用[J]. 舰船科学技术, 2017, 39(8): 85-90. doi: 10.3404/j.issn.1672-7649.2017.08.018

    LI Hong-rui, XIONG Liang-sheng, SHAO Shi-yi. Application and research of DC electric propulsion to the SWATH scientific research vessel[J]. Ship Science and Technology, 2017, 39(8): 85-90. (in Chinese) doi: 10.3404/j.issn.1672-7649.2017.08.018
    [40]
    侯慧, 甘铭, 吴细秀, 等. 混合动力船舶能量管理研究综述[J]. 中国舰船研究, 2021, 16(5): 216-229. https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG202105025.htm

    HOU Hui, GAN Ming, WU Xi-xiu, et al. Review of hybrid ship energy management[J]. Chinese Journal of Ship Research, 2021, 16(5): 216-229. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG202105025.htm
    [41]
    ZHU Li-si, HAN Jin-gang, PENG Dong-kai, et al. Fuzzy logic based energy management strategy for a fuel cell/battery/ultra-capacitor hybrid ship[C]//IEEE. 2014 First International Conference on Green Energy. New York: IEEE, 2014: 107-112.
    [42]
    潘钊, 商蕾, 高海波, 等. 燃料电池混合动力船舶复合储能系统与能量管理策略优化[J]. 大连海事大学学报, 2021, 47(3): 79-85. doi: 10.3969/j.issn.1671-7031.2021.03.012

    PAN Zhao, SHANG Lei, GAO Hai-bo, et al. Optimization of composite energy storage system and energy management strategy for fuel cell ships[J]. Journal of Dalian Maritime University, 2021, 47(3): 79-85. (in Chinese) doi: 10.3969/j.issn.1671-7031.2021.03.012
    [43]
    杨庆勇. 氢燃料在船舶上的应用分析[J]. 青岛远洋船员职业学院学报, 2020, 41(4): 41-44, 59. doi: 10.3969/j.issn.2095-3747.2020.04.010

    YANG Qing-yong. On the application of hydrogen energy in ships[J]. Journal of Qingdao Ocean Shipping Mariners College, 2020, 41(4): 41-44, 59. (in Chinese) doi: 10.3969/j.issn.2095-3747.2020.04.010
    [44]
    刘福水, 郝利君, HEITZ P B. 氢燃料内燃机技术现状与发展展望[J]. 汽车工程, 2006, 28(7): 621-625. doi: 10.3321/j.issn:1000-680X.2006.07.004

    LIU Fu-shui, HAO Li-jun, HEITZ P B. Technology status and development prospect of hydrogen fuel internal combustion engine[J]. Automotive Engineering, 2006, 28(7): 621-625. (in Chinese) doi: 10.3321/j.issn:1000-680X.2006.07.004
    [45]
    SARTBAEVA A, KUZNETSOV V L, WELLS S A, et al. Hydrogen nexus in a sustainable energy future[J]. Energyand Environmental Science, 2008, 1(1): 79-85. doi: 10.1039/b810104n
    [46]
    葛玉振, 林丽利, 姚思宇, 等. 适用于氢气低温制备与高效存储的催化新体系[J]. 科学通报, 2018, 63(21): 2140-2147. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201821007.htm

    GE Yu-zhen, LIN Li-li, YAO Si-yu, et al. Catalysis for efficient low-temperature hydrogen production and storage[J]. Chinese Science Bulletin, 2018, 63(21): 2140-2147. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201821007.htm
    [47]
    俞红梅, 邵志刚, 侯明, 等. 电解水制氢技术研究进展与发展建议[J]. 中国工程科学, 2021, 23(2): 146-152. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX202102020.htm

    YU Hong-mei, SHAO Zhi-gang, HOU Ming, et al. Hydrogen production by water electrolysis: progress and suggestions[J]. Strategic Study of CAE, 2021, 23(2): 146-152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX202102020.htm
    [48]
    符冠云. 氢能在我国能源转型中的地位和作用[J]. 中国煤炭, 2019, 45(10): 15-21. doi: 10.3969/j.issn.1006-530X.2019.10.004

    FU Guan-yun. The status and role of hydrogen energy in China's energy transformation[J]. China Coal, 2019, 45(10): 15-21. (in Chinese) doi: 10.3969/j.issn.1006-530X.2019.10.004
    [49]
    郭博文, 罗聃, 周红军. 可再生能源电解制氢技术及催化剂的研究进展[J]. 化工进展, 2021, 40(6): 2933-2951. https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202106001.htm

    GUO Bo-wen, LUO Dan, ZHOU Hong-jun. Recent advances in renewable energy electrolysis hydrogen production technology and related electrocatalysts[J]. Chemical Industry and Engineering Progress, 2021, 40(6): 2933-2951. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGJZ202106001.htm
    [50]
    杜泽学, 慕旭宏. 水电解技术发展及在绿氢生产中的应用[J]. 石油炼制与化工, 2021, 52(2): 102-110. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLH202102032.htm

    DU Ze-xue, MU Xu-hong. Development of water electrolysis technology and its application in green hydrogen production[J]. Petroleum Processing and Petrochemicals, 2021, 52(2): 102-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYLH202102032.htm
    [51]
    宋时莉, 李黎明, 朱艳兵, 等. Nafion质子交换膜退化研究进展[J]. 山东化工, 2017, 46(17): 59-62. https://www.cnki.com.cn/Article/CJFDTOTAL-SDHG201717024.htm

    SONG Shi-li, LI li-ming, ZHU Yan-bing, et al. Study progress about degradation of nafion proton exchange membrane[J]. Shandong Chemical Industry, 2017, 46(17): 59-62. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDHG201717024.htm
    [52]
    范芷萱, 俞红梅, 姜广, 等. PEM水电解池低成本阳极钛纤维毡扩散层研究[J]. 电源技术, 2020, 44(7): 933-936. https://www.cnki.com.cn/Article/CJFDTOTAL-DYJS202007001.htm

    FAN Zhi-xuan, YU Hong-mei, JIANG Guang, et al. A low-cost Ti felt anode gas diffusion layer for PEM water electrolysis[J]. Chinese Journal of Power Sources, 2020, 44(7): 933-936. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DYJS202007001.htm
    [53]
    LETTENMEIER P, WANG R, ABOUATALLAH R, et al. Low-cost and durable bipolar plates for proton exchange membrane electrolyzers[J]. Scientific Reports, 2017, 7: 44035.
    [54]
    VAN HOECKE L, LAFFINEUR L, CAMPE R, et al. Challenges in the use of hydrogen for maritime applications[J]. Energy and Environmental Science, 2021, 14: 815-843.
    [55]
    ESPOSITO D V. Membraneless electrolyzers for low-cost hydrogen production in a renewable energy future[J]. Joule, 2017, 1: 651-658.
    [56]
    李争, 张蕊, 孙鹤旭, 等. 可再生能源多能互补制-储-运氢关键技术综述[J]. 电工技术学报, 2021, 36(3): 446-462. https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202103002.htm

    LI Zheng, ZHANG Rui, SUN He-xu, et al. Review on key technologies of hydrogen generation, storage and transportation based on multi-energy complementary renewable energy[J]. Transactions of China Electrotechnical Society, 2021, 36(3): 446-462. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGJS202103002.htm
    [57]
    高金良, 袁泽明, 尚宏伟, 等. 氢储存技术及其储能应用研究进展[J]. 金属功能材料, 2016, 23(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGC201601001.htm

    GAO Jin-liang, YUAN Ze-ming, SHANG Hong-wei, et al. Research progress on storage technology and stored energy application of hydrogen[J]. Metallic Functional Materials, 2016, 23(1): 1-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSGC201601001.htm
    [58]
    李璐伶, 樊栓狮, 陈秋雄, 等. 储氢技术研究现状及展望[J]. 储能科学与技术, 2018, 7(4): 586-594. https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX201804011.htm

    LI Lu-ling, FAN Shuan-shi, CHEN Qiu-xiong, et al. Hydrogen storage technology: current status and prospects[J]. Energy Storage Science and Technology, 2018, 7(4): 586-594. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX201804011.htm
    [59]
    郑津洋, 开方明, 刘仲强, 等. 轻质高压储氢容器[J]. 化工学报, 2004(S1): 130-133. https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ2004S1026.htm

    ZHENG Jin-yang, KAI Fang-ming, LIU Zhong-qiang, et al. Lightweight high-pressure hydrogen tank[J]. Journal of Chemical Industry and Engineering, 2004, 55(S1): 130-133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HGSZ2004S1026.htm
    [60]
    欧训民. 氢能制取和储存技术研究发展综述[J]. 能源研究与信息, 2009, 25(1): 1-4, 16. https://www.cnki.com.cn/Article/CJFDTOTAL-NYYX200901002.htm

    OU Xun-min. A review on the research and development of hydrogen production and storage technologies[J]. Energy Research and Information Technology, 2009, 25(1): 1-4, 16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NYYX200901002.htm
    [61]
    杨妙梁. 世界燃料电池车发展动向(三)——丰田燃料电池车开发与制氢、储氢技术概况[J]. 汽车与配件, 2005(5): 34-37. https://www.cnki.com.cn/Article/CJFDTOTAL-QCPJ200505014.htm

    YANG Miao-liang. Development trend of fuel cell vehicles in the world (3) —Toyota fuel cell vehicles development, and hydrogen production and storage technology[J]. Automobile and Parts, 2005(5): 34-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCPJ200505014.htm
    [62]
    郭志钒, 巨永林. 低温液氢储存的现状及存在问题[J]. 低温与超导, 2019, 47(6): 21-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DWYC201906004.htm

    GUO Zhi-fan, JU Yong-lin. Status and problems of cryogenic liquid hydrogen storage[J]. Cryogenics and Superconductivity, 2019, 47(6): 21-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DWYC201906004.htm
    [63]
    HODOSHIMA S, ARAI H, TAKAIWA S, et al. Catalytic decalin dehydrogenation/naphthalene hydrogenation pair as a hydrogen source for fuel-cell vehicle[J]. International Journal of Hydrogen Energy, 2003, 28(11): 1255-1262.
    [64]
    双慧丽. 全氢化有机液体储氢物低温催化脱氢研究[D]. 杭州: 浙江大学, 2020.

    SHUANG Hui-li. Study of dehydrogenation of hydrogen-rich liauid organic hydrogen carriers at low temperature[D]. Hangzhou: Zhejiang University, 2020. (in Chinese)
    [65]
    汪云华, 王靖坤, 赵家春, 等. 固体储氢材料的研究进展[J]. 材料导报, 2011, 25(9): 120-124. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201109028.htm

    WANG Yun-hua, WANG Jing-kun, ZHAO Jia-chun, et al. Research progress of solid-state hydrogen storage materials[J]. Materials Reports, 2011, 25(9): 120-124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201109028.htm
    [66]
    卢国俭, 周仕学, 姜瑶瑶, 等. 金属合金及碳材料储氢的研究进展[J]. 材料导报, 2007, 21(3): 86-89. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200703024.htm

    LU Guo-jian, ZHOU Shi-xue, JIANG Yao-yao, et al. Overview of alloy and carbon material for hydrogen storage[J]. Materials Reports, 2007, 21(3): 86-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB200703024.htm
    [67]
    REN J W, MUSYOKA N M, LANGMI H W, et al. Current research trends and perspectives on materials-based hydrogen storage solutions: a critical review[J]. International Journal of Hydrogen Energy, 2017, 42(1): 289-311.
    [68]
    陈俊, 陈秋雄, 陈运文, 等. 水合物储能技术研究现状[J]. 储能科学与技术, 2015, 4(2): 131-140. https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX201502008.htm

    CHEN Jun, CHEN Qiu-xiong, CHEN Yun-wen, et al. Current status of energy storage using hydrates[J]. Energy Storage Science and Technology, 2015, 4(2): 131-140. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CNKX201502008.htm
    [69]
    KAMIYA S, NISHIMURA M, HARADA E. Study on introduction of CO2 free energy to Japan with liquid hydrogen[J]. Physics Procedia, 2015, 67: 11-19.
    [70]
    DE STEFANO M, ROCOURT X, SOCHET I, et al. Hydrogen dispersion in a closed environment[J]. International Journal of Hydrogen Energy, 2019, 44: 9031-9040.
    [71]
    李云浩, 喻源, 张庆武. 车库内氢气扩散和分布状态的数值模拟[J]. 安全与环境学报, 2017, 17(5): 1884-1889. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201705052.htm

    LI Yun-hao, YU Yuan, ZHANG Qing-wu. Numerical simulation for the hydrogen dispersion and distribution behaviors in the garage context[J]. Journal of Safety and Environment, 2017, 17(5): 1884-1889. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ201705052.htm
    [72]
    刘延雷, 郑津洋, 徐平, 等. 环境温度对高压储氢罐泄漏扩散影响的数值模拟[J]. 工程热物理学报, 2008, 29(5): 770-772. https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB200805013.htm

    LIU Yan-lei, ZHENG Jin-yang, XU Ping, et al. Numerical simulation on the influnce of environment temperature on the leakage and diffusion of high pressured hydrogen due to storage tank failure[J]. Journal of Engineering Thermophysics, 2008, 29(5): 770-772. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCRB200805013.htm
    [73]
    徐平, 刘鹏飞, 刘延雷, 等. 高压储氢罐不同位置泄漏扩散的数值模拟研究[J]. 高校化学工程学报, 2008, 22(6): 921-926.

    XU Ping, LIU Peng-fei, LIU Yan-lei, et al. Numerical simulation on the leakage and diffusion of hydrogen due to high pressured storage tank failure at different positions[J]. Journal of Chemical Engineering of Chinese Universities, 2008, 22(6): 921-926. (in Chinese)
    [74]
    郑津洋, 刘延雷, 徐平, 等. 障碍物对高压储氢罐泄漏扩散影响的数值模拟[J]. 浙江大学学报(工学版), 2008, 42(12): 2177-2180. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC200812024.htm

    ZHENG Jin-yang, LIU Yan-lei, XU Ping, et al. Numerical simulation of obstacle influence on leakage and diffusion of hydrogen due to high-pressure storage tank failure[J]. Journal of Zhejiang University (Engineering Science), 2008, 42(12): 2177-2180. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC200812024.htm
    [75]
    李峰. 燃料电池客船氢气系统设计与氢泄漏数值模拟研究[D]. 武汉: 武汉理工大学, 2018.

    LI Feng. Study on the design of hydrogen system and numerical simulation of hydrogen leakatge in fuel cell passenger ship[D]. Wuhan: Wuhan University of Technology, 2018. (in Chinese)
    [76]
    BRENNAN S, MOLKOV V. Pressure peaking phenomenon for indoor hydrogen releases[J]. International Journal of Hydrogen Energy, 2018, 43(39): 18530-18541.
    [77]
    FUSTER B, HOUSSIN-AGBOMSON D, JALLAIS S, et al. Guidelines and recommendations for indoor use of fuel cells and hydrogen systems[J]. International Journal of Hydrogen Energy, 2017, 42: 7600-7607.
    [78]
    LIU Yuan-liang, LIU Zhan, WEI Jian-jian, et al. Spread characteristics of hydrogen vapor cloud for liquid hydrogen spill under different source conditions[J]. International Journal of Hydrogen Energy, 2021, 46(5): 4606-4613.
    [79]
    LIU Yuan-liang, WEI Jian-jian, LEI Gang, et al. Spread of hydrogen vapor cloud during continuous liquid hydrogen spills[J]. Cryogenics, 2019, 103(3): 102975.
    [80]
    LIU Yuan-liang, WEI Jian-jian, LEI Gang, et al. Modeling the development of hydrogen vapor cloud considering the presence of air humidity[J]. International Journal of Hydrogen Energy, 2019, 44(3): 2059-2068.
    [81]
    SHAO Xiang-yu, PU Liang, LI Qiang, et al. Numerical investigation of flammable cloud on liquid hydrogen spill under various weather conditions[J]. International Journal of Hydrogen Energy, 2018, 43(10): 5249-5260.
    [82]
    LIU Yuan-liang, LIU Zhan, WEI Jian-jian, et al. Evaluation and prediction of the safe distance in liquid hydrogen spill accident[J]. Process Safety and Environmental Protection, 2021, 146: 1-8.
    [83]
    SATO Y, IWABUCHI H, GROETHE M, et al. Experiments on hydrogen deflagration[J]. Journal of Power Sources, 2006, 159(1): 144-148.
    [84]
    SCHEFER R W, GROETHE M, HOUF W G, et al. Experimental evaluation of barrier walls for risk reduction of unintended hydrogen releases[J]. International Journal of Hydrogen Energy, 2009, 34(3): 1590-1606.
    [85]
    SCHIAVETTI M, CARCASSI M N. Experimental tests of inhomogeneous hydrogen deflagrations in the presence of obstacles[J]. International Journal of Hydrogen Energy, 2021, 46(23): 12455-12463.
    [86]
    DOROFEEV S B. Evaluation of safety distances related to unconfined hydrogen explosions[J]. International Journal of Hydrogen Energy, 2007, 32(13): 2118-2124.
    [87]
    XIAO Hua-hua, DUAN Qiang-ling, SUN Jin-hua. Premixed flame propagation in hydrogen explosions[J]. Renewable and Sustainable Energy Reviews, 2018, 81(2): 1988-2001.
    [88]
    LIANG Zhe, GARDNER L, CLOUTHIER T, et al. Hydrogen deflagrations in stratified flat layers in the large-scale vented combustion test facility[J]. International Journal of Hydrogen Energy, 2021, 46(23): 12533-12544.
    [89]
    LI Xin-feng, MA Xian-feng, ZHANG Jin, et al. Review of hydrogen embrittlement in metals: hydrogen diffusion, hydrogen characterization, hydrogen embrittlement mechanism and prevention[J]. Acta Metallurgica Sinica(English Letters), 2020, 33: 759-773.
    [90]
    尹谢平, 李斌, 高增梁, 等. 高压气瓶用34CrMo4钢抗氢脆性能及影响因素[J]. 中国特种设备安全, 2018, 34(1): 24-29. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGLA201801008.htm

    YIN Xie-ping, LI Bin, GAO Zeng-liang, et al. Hydrogen embrittlement resistant and influence factors of 34CrMo4 steel in high pressure cylinders[J]. China Special Equipment Safety, 2018, 34(1): 24-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGLA201801008.htm
    [91]
    李志勇, 潘相敏, 谢佳, 等. 加氢站风险评价研究现状与进展[J]. 科技导报, 2009, 27(16): 93-98. https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB200916040.htm

    LI Zhi-yong, PAN Xiang-min, XIE Jia, et al. Risk assessment on hydrogen refueling stations[J]. Science and Technology Guide, 2009, 27(16): 93-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJDB200916040.htm
    [92]
    NILSEN S, ANDERSEN H S, HAUGOM G P, et al. Risk assessments of hydrogen refuelling station concepts based on onsite production[R]. Porsgrunn: Norsk Hydro ASA, 2003.
    [93]
    张陈诗. 燃料电池汽车加氢站风险评价研究[D]. 重庆: 重庆大学, 2019.

    ZHANG Chen-shi. Research on risk evaluation of fuel cell vehicle hydrogen refueling station[D]. Chongqing: Chongqing University, 2019. (in Chinese)
    [94]
    DADASHZADEH M, KASHKAROV S, MAKAROV D, et al. Risk assessment methodology for onboard hydrogen storage[J]. International Journal of Hydrogen Energy, 2018, 43(12): 6462-6475.
    [95]
    李静媛, 赵永志, 郑津洋. 加氢站高压氢气泄漏爆炸事故模拟及分析[J]. 浙江大学学报(工学版), 2015, 49(7): 1389-1394. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201507026.htm

    LI Jing-yuan, ZHAO Yong-zhi, ZHENG Jin-yang. Simulation and analysis on leakage and explosion of high pressure hydrogen in hydrogen refueling station[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(7): 1389-1394. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201507026.htm
    [96]
    RIGAS F, SKLAVOUNOS S. Evaluation of hazards associated with hydrogen storage facilities[J]. International Journal of Hydrogen Energy, 2005, 30(13/14): 1501-1510.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2825) PDF downloads(379) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return