Citation: | LI Chang-zhen, CHEN Wei, WANG Jue, CHANG Fu-xing. Wireless channel measurement and typical channel characteristics for intelligent inland navigation communications[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 322-333. doi: 10.19818/j.cnki.1671-1637.2022.04.025 |
[1] |
严新平, 刘佳仑, 范爱龙, 等. 智能船舶技术发展与趋势简述[J]. 船舶工程, 2020, 42(3): 15-20. https://www.cnki.com.cn/Article/CJFDTOTAL-CANB202003008.htm
YAN Xin-ping, LIU Jia-lun, FAN Ai-long, et al. Brief introduction to the development and trend of intelligent ship technology[J]. Ship Engineering, 2020, 42(3): 15-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CANB202003008.htm
|
[2] |
严新平. 自主水路交通系统的研究与展望[J]. 中国水运, 2020(7): 6-7. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHOG202007003.htm
YAN Xin-ping. Research and prospect of autonomous waterway transportation system[J]. China Water Transport, 2020(7): 6-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZHOG202007003.htm
|
[3] |
严新平, 张金奋, 吴兵. 交通强国战略下水运安全挑战与展望[J]. 长江技术经济, 2018, 2(3): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJJ201803007.htm
YAN Xin-ping, ZHANG Jin-fen, WU Bing. Challenges and prospects of waterway shipment safety under the strategy of strength in transportation[J]. Technology and Economy of Changjiang, 2018, 2(3): 39-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CJJJ201803007.htm
|
[4] |
ERAS L E C, DA SILVA D K N, BARROS F B, et al. A radio propagation model for mixed paths in Amazon environments for the UHF band[J]. Wireless Communications and Mobile Computing, 2018, 2018: 2850830.
|
[5] |
IMOIZE A L, OGUNFUWA T E. Propagation measurements of a 4G LTE network in Lagoon environment[J]. Nigerian Journal of Technological Development, 2019, 16(1): 1-9. doi: 10.4314/njtd.v16i1.1
|
[6] |
LI C, YU J, CHEN W, et al. Shadowing correlation and a novel statistical model for Inland River radio channel[C]//IEEE. 2019 IEEE International Conference on Communications. New York: IEEE, 2019: 1-6.
|
[7] |
YU J Y, CHEN W, YANG K, et al. Path loss channel model for inland river radio propagation at 1.4 GHz[J]. International Journal of Antennas and Propagation, 2017, 2017: 5853724.
|
[8] |
YU J Y, CHEN W, LI F, et al. Channel measurement and modeling of the small-scale fading characteristics for urban inland river environment[J]. IEEE Transactions on Wireless Communications, 2020, 19(5): 3376-3389. doi: 10.1109/TWC.2020.2972885
|
[9] |
LI C Z, YU J Y, CHEN W, et al. Measurement-based wireless channel analysis and modelling for shipping environments[J]. IET Microwaves, Antennas and Propagation, 2020, 14(8): 812-820. doi: 10.1049/iet-map.2019.1041
|
[10] |
孙丽萍. 探讨现代通信与信息技术在海事通信中的应用趋势[J]. 信息通信, 2014, 27(5): 209. https://www.cnki.com.cn/Article/CJFDTOTAL-HBYD201405146.htm
SUN Li-ping. Discussion on the application trend of modern communication and information technology in maritime communication[J]. Information Communication, 2014, 27(5): 209. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HBYD201405146.htm
|
[11] |
夏明华, 朱又敏, 陈二虎, 等. 海洋通信的发展现状与时代挑战[J]. 中国科学: 信息科学, 2017, 47(6): 667-695. https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201706001.htm
XIA Ming-hua, ZHU You-min, CHEN Er-hu, et al. The state of the art and challenges of marine communications[J]. Scientia Sinica(Informationis), 2017, 47(6): 667-695. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201706001.htm
|
[12] |
VALČIĆ S, MRAK Z, GULIĆ M. Analysis of advantages and disadvantages of existing maritime communication systems for data exchange[J]. Pomorstvo, 2016, 30(1): 28-37. doi: 10.31217/p.30.1.4
|
[13] |
JO S W, SHIM W S. LTE-maritime: high-speed maritime wireless communication based on LTE technology[J]. IEEE Access, 2019, 7: 53172-53181. doi: 10.1109/ACCESS.2019.2912392
|
[14] |
HUO Y M, DONG X D, BEATTY S. Cellular communications in ocean waves for maritime internet of things[J]. IEEE Internet of Things Journal, 2020, 7(10): 9965-9979.
|
[15] |
LOPES M J, TEIXEIRA F, MAMEDE J B, et al. Wi-Fi broadband maritime communications using 5.8 GHz band[C]//IEEE. 2014 IEEE Underwater Communications and Networking. New York: IEEE, 2014: 1-5.
|
[16] |
LI G, GUO S R, LYU J, et al. Introduction to global short message communication service of BeiDou-3 navigation satellite system[J]. Advances in Space Research, 2021, 67(5): 1701-1708.
|
[17] |
WANG W, JOST T, RAULEFS R. A semi-deterministic path loss model for in-harbor LoS and NLoS environment[J]. IEEE Transactions on Antennas and Propagation, 2017, 65(12): 7399-7404.
|
[18] |
严忠贞, 严新平, 马枫, 等. 绿色长江航运智能化信息服务系统及其关键技术研究[J]. 交通信息与安全, 2010, 29(6): 76-81. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201006023.htm
YAN Zhong-zhen, YAN Xin-ping, MA Feng, et al. Green Yangtze river, intelligent shipping information system and its key technologies[J]. Journal of Transport Information and Safety, 2010, 29(6): 76-81. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS201006023.htm
|
[19] |
严新平, 柳晨光. 智能航运系统的发展现状与趋势[J]. 智能系统学报, 2016, 11(6): 807-817. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNXT201606010.htm
YAN Xin-ping, LIU Chen-guang. Review and prospect for intelligent waterway transportation system[J]. CAAI Transactions on Intelligent Systems, 2016, 11(6): 807-817. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNXT201606010.htm
|
[20] |
YU J Y, ZHANG B, CHEN W, et al. 4G TD-LTE radio coverage model optimization design under complex inland river environment[C]//IEEE. 2015 IEEE International Conference on Transportation Information and Safety. New York: IEEE, 2015: 442-446.
|
[21] |
LI C Z, YU J Y, CHEN W, et al. Measurements and analysis of vehicular radio channels in the inland lake bridge area[J]. IET Microwaves, Antennas and Propagation, 2019, 13(9): 1394-1401.
|
[22] |
于俊逸. 内河场景下的无线信道测量与建模研究[D]. 武汉: 武汉理工大学, 2018.
YU Jun-yi. Wireless channel measurements and channel modeling for inland river scenario[D]. Wuhan: Wuhan University of Technology, 2018. (in Chinese)
|
[23] |
OKUMURA Y. Field strength and its variability in VHF and UHF land-mobile radio service[J]. Review of the Electrical Communication Laboratory, 1968, 16: 825-873.
|
[24] |
HATA M. Empirical formula for propagation loss in land mobile radio services[J]. IEEE Transactions on Vehicular Technology, 1980, 29(3): 317-325.
|
[25] |
ZHANG J K, LIU Y W, GU Y L, et al. Large-scale test of 4G TD-LTE network[C]//ZHONG Zhi-cai. Proceedings of the 2012 International Conference on Information Engineering and Applications. Berlin: Springer, 2013: 121-128.
|
[26] |
MOLISCH A F. Wireless Communications[M]. New York: John Wiley and Sons, 2012.
|
[27] |
GOLDSMITH A. Wireless Communications[M]. Cambridge: Cambridge University Press, 2005.
|
[28] |
FANG C, ALLEN B, LIU E, et al. Indoor-indoor and indoor-outdoor propagation trial results at 2.6 GHz[C]//IEEE. 2012 Loughborough Antennas and Propagation Conference. New York: IEEE, 2012: 1-4.
|
[29] |
YANG K, ROSTE T, BEKKADAL F, et al. Experimental multipath delay profile of mobile radio channels over sea at 2 GHz[C]//IEEE. 2012 Loughborough Antennas and Propagation Conference. New York: IEEE, 2012: 1-4.
|
[30] |
YU J Y, CHEN W, LI F, et al. Measurement-based V2V radio channel analysis and modelling for bridge scenarios at 5.9 GHz[J]. IET Communications, 2020, 14(3): 376-386.
|