Citation: | MA Jie, HE Mu-rong, JIA Cheng-feng, LI Wen-kai, ZHANG Yu. Semantic representation of ship behavior based on context autoencoder[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 334-347. doi: 10.19818/j.cnki.1671-1637.2022.04.026 |
[1] |
朱姣, 刘敬贤, 陈笑, 等. 基于轨迹的内河船舶行为模式挖掘[J]. 交通信息与安全, 2017, 35(3): 107-116, 132. doi: 10.3963/j.issn.1674-4861.2017.03.014
ZHU Jiao, LIU Jing-xian, CHEN Xiao, et al. Behavior pattern mining of inland vessels based on trajectories[J]. Journal of Transport Information and Safety, 2017, 35(3): 107-116, 132. (in Chinese) doi: 10.3963/j.issn.1674-4861.2017.03.014
|
[2] |
文元桥, 张义萌, 黄亮, 等. 基于语义的船舶行为动态推理机制[J]. 中国航海, 2019, 42(3): 34-39, 50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201903008.htm
WEN Yuan-qiao, ZHANG Yi-meng, HUANG Liang, et al. Mechanism of ship behavior dynamic reasoning based on semantics[J]. Navigation of China, 2019, 42(3): 34-39, 50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201903008.htm
|
[3] |
TU En-mei, ZHANG Guang-hao, RACHMAWATI L, et al. Exploiting AIS data for intelligent maritime navigation: a comprehensive survey from data to methodology[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 19(5): 1559-1582.
|
[4] |
LEI D, FLORIS G, PENTTI K. Review and analysis of methods for assessing maritime waterway risk based on non-accident critical events detected from AIS data[J]. Reliability Engineering and System Safety, 2020, 200: 106933. doi: 10.1016/j.ress.2020.106933
|
[5] |
YANG Dong, WU Ling-xiao, WANG Shuai-an, et al. How big data enriches maritime research—a critical review of automatic identification system (AIS) data applications[J]. Transport Reviews, 2019, 39(6): 755-773. doi: 10.1080/01441647.2019.1649315
|
[6] |
甄荣, 邵哲平, 潘家财. 基于AIS数据的船舶行为特征挖掘与预测: 研究进展与展望[J]. 地球信息科学学报, 2021, 23(12): 2111-2127. doi: 10.12082/dqxxkx.2021.210495
ZHEN Rong, SHAO Zhe-ping, PAN Jia-cai. Advance in character mining and prediction of ship behavior based on AIS data[J]. Journal of Geo-Information Science, 2021, 23(12): 2111-2127. (in Chinese) doi: 10.12082/dqxxkx.2021.210495
|
[7] |
陶阳, 毛喆, 盛萍, 等. 基于船舶行为的武汉长江大桥水域货船通航规律研究[J]. 交通信息与安全, 2018, 36(1): 49-56. doi: 10.3963/j.issn.1674-4861.2018.01.007
TAO Yang, MAO Zhe, SHENG Ping, et al. A study of regularity of navigation patterns of cargo ships at the waterways near Wuhan Yangtze River Bridge based on ship maneuvering behavior[J]. Journal of Transport Information and Safety, 2018, 36(1): 49-56. (in Chinese) doi: 10.3963/j.issn.1674-4861.2018.01.007
|
[8] |
WU Xing, MEHTA A L, ZALOOM V A, et al. Analysis of waterway transportation in Southeast Texas waterway based on AIS data[J]. Ocean Engineering, 2016, 121: 196-209. doi: 10.1016/j.oceaneng.2016.05.012
|
[9] |
XIAO Fang-liang, LIGTERINGEN H, VAN-GULIJK C, et al. Comparison study on AIS data of ship traffic behavior[J]. Ocean Engineering, 2015, 95: 84-93. doi: 10.1016/j.oceaneng.2014.11.020
|
[10] |
甄荣, 邵哲平, 潘家财, 等. 基于AIS信息的航道内船舶速度分布统计分析[J]. 集美大学学报(自然科学版), 2014, 19(4): 274-278. doi: 10.3969/j.issn.1007-7405.2014.04.006
ZHEN Rong, SHAO Zhe-ping, PAN Jia-cai, et al. Statistical analysis of distribution of ship speed within the fairway based on AIS data[J]. Journal of Jimei University (Natural Science), 2014, 19(4): 274-278. (in Chinese) doi: 10.3969/j.issn.1007-7405.2014.04.006
|
[11] |
HUANG Liang, WEN Yuan-qiao, GUO Wei, et al. Mobility pattern analysis of ship trajectories based on semantic transformation and topic model[J]. Ocean Engineering, 2020, 201: 107092. doi: 10.1016/j.oceaneng.2020.107092
|
[12] |
朱飞祥, 张英俊, 高宗江. 基于数据挖掘的船舶行为研究[J]. 中国航海, 2012, 35(2): 50-54. doi: 10.3969/j.issn.1000-4653.2012.02.011
ZHU Fei-xiang, ZHANG Ying-jun, GAO Zong-jiang. Research on ship behaviors based on data mining[J]. Navigation of China, 2012, 35(2): 50-54. (in Chinese) doi: 10.3969/j.issn.1000-4653.2012.02.011
|
[13] |
ZHANG Wei-bin, GOERLANDT F, KUJALA P, et al. An advanced method for detecting possible near miss ship collisions from AIS data[J]. Ocean Engineering, 2016, 124: 141-156. doi: 10.1016/j.oceaneng.2016.07.059
|
[14] |
BENGIO Y, COURVILLE A, VINCENT P. Representation learning: a review and new perspectives[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8): 1798-1828. doi: 10.1109/TPAMI.2013.50
|
[15] |
WANG Sheng, BAO Zhi-feng, CULPEPPER J S, et al. A survey on trajectory data management, analytics, and learning[J]. ACM Computing Surveys (CSUR), 2021, 53(2): 1-36.
|
[16] |
LI Li, LI Xin, YANG Yuan, et al. Indoor tracking trajectory data similarity analysis with a deep convolutional autoencoder[J]. Sustainable Cities and Society, 2019, 45: 588-595. doi: 10.1016/j.scs.2018.12.025
|
[17] |
WANG Wei, XIA Feng, NIE Han-song, et al. Vehicle trajectory clustering based on dynamic representation learning of internet of vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6): 3567-3576. doi: 10.1109/TITS.2020.2995856
|
[18] |
ZHOU Yang, DAAMEN W, VELLINGA T, et al. Ship classification based on ship behavior clustering from AIS data[J]. Ocean Engineering, 2019, 175(1): 176-187.
|
[19] |
YAO Di, ZHANG Chao, ZHU Zhi-hua, et al. Trajectory clustering via deep representation learning[C]//IEEE. 2017 International Joint Conference on Neural Networks (IJCNN). New York: IEEE, 2017: 3880-3887.
|
[20] |
ZHANG Rui, XIE Peng, JIANG Huang-bo, et al. Clustering noisy trajectories via robust deep attention auto-encoders[C]//IEEE. 2019 20th IEEE International Conference on Mobile Data Management (MDM). New York: IEEE, 2019: 63-71.
|
[21] |
谢鹏. 基于深度学习的轨迹数据中移动模式发现方法研究[D]. 武汉: 武汉理工大学, 2019.
XIE Peng. Research on moving pattern discovery method in trajectory data based on deep learning[D]. Wuhan: Wuhan University of Technology, 2019. (in Chinese)
|
[22] |
常吉亮, 谢磊, 赵建伟, 等. 基于VAE-LSTM模型的航迹异常检测算法[J]. 交通信息与安全, 2020, 38(6): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202006002.htm
CHANG Ji-liang, XIE Lei, ZHAO Jian-wei, et al. An anomaly detection algorithm for ship trajectory data based on VAE-LSTM model[J]. Journal of Transport Information and Safety, 2020, 38(6): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJS202006002.htm
|
[23] |
WEN Yuan-qiao, ZHANG Yi-meng, HUANG Liang, et al. Semantic modelling of ship behavior in harbor based on ontology and dynamic Bayesian network[J]. ISPRS International Journal of Geo-Information, 2019, DOI: 10.3390/ijgi8030107.
|
[24] |
PARENT C, SPACCAPIETRA S, RENSO C, et al. Semantic trajectories modeling and analysis[J]. ACM Computing Surveys (CSUR), 2013, 45(4): 1-32.
|
[25] |
MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv, 2013, Bibcode: 2013arXiv1301.3781M.
|
[26] |
甄荣, 金永兴, 胡勤友, 等. 基于AIS信息和BP神经网络的船舶航行行为预测[J]. 中国航海, 2017, 40(2): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201702002.htm
ZHEN Rong, JIN Yong-xing, HU Qin-you, et al. Vessel behavior prediction based on AIS data and BP neural network[J]. Navigation of China, 2017, 40(2): 6-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201702002.htm
|
[27] |
刘娇, 史国友, 杨学钱, 等. 基于DE-SVM的船舶航迹预测模型[J]. 上海海事大学学报, 2020, 41(1): 34-39, 115. https://www.cnki.com.cn/Article/CJFDTOTAL-SHHY202001006.htm
LIU Jiao, SHI Guo-you, YANG Xue-qian, et al. Ship trajectory prediction model based on DE-SVM[J]. Journal of Shanghai Maritime University, 2020, 41(1): 34-39, 115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHHY202001006.htm
|
[28] |
FANG Zhi-xiang, YU Hong-chu, KE Ran-xuan, et al. Automatic identification system-based approach for assessing the near-miss collision risk dynamics of ships in ports[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(2): 534-543.
|
[29] |
LIN J, KEOGH E, WEI L, et al. Experiencing SAX: a novel symbolic representation of time series[J]. Data Mining and Knowledge Discovery, 2007, 15(2): 107-144.
|
[30] |
KRASNOV F, SEN A. The number of topics optimization: clustering approach[J]. Machine Learning and Knowledge Extraction, 2019, 1(1): 416-426.
|
[31] |
WANG Wen-shuo, RAMESH A, ZHU Jia-cheng, et al. Clustering of driving encounter scenarios using connected vehicle trajectories[J]. IEEE Transactions on Intelligent Vehicles, 2020, 5(3): 485-496.
|