Citation: | WANG De-cai, DONG Shi, HU Lei, HAO Pei-wen, ZHANG Qing, CHEN Yuan-zhao. Influencing factors and mechanism analysis for evaluation of fatigue characteristics of emulsified asphalt residues[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 103-115. doi: 10.19818/j.cnki.1671-1637.2023.02.007 |
[1] |
ILIAS M, ADAMS J, CASTORENA C, et al. Performance-related specifications for asphalt emulsions used in microsurfacing treatments[J]. Transportation Research Record, 2017, 2632(1): 1-13. doi: 10.3141/2632-01
|
[2] |
SHENG Xiao-hui, WANG Mo, XU Tao, et al. Preparation, properties and modification mechanism of polyurethane modified emulsified asphalt[J]. Construction and Building Materials, 2018, 189: 375-383. doi: 10.1016/j.conbuildmat.2018.08.177
|
[3] |
XIAO Jing-jing, JIANG Wei, YE Wan-li, et al. Effect of cement and emulsified asphalt contents on the performance of cement-emulsified asphalt mixture[J]. Construction and Building Materials, 2019, 220: 577-586. doi: 10.1016/j.conbuildmat.2019.06.051
|
[4] |
张久鹏, 朱红斌, 裴建中, 等. 基于龚帕斯模型的改性乳化沥青胶浆黏度与沥青破乳评价[J]. 交通运输工程学报, 2015, 15(5): 1-7. doi: 10.19818/j.cnki.1671-1637.2015.05.001
ZHANG Jiu-peng, ZHU Hong-bin, PEI Jian-zhong, et al. Evaluation of asphalt demulsification and viscosity of modified asphalt emulsion mortar based on Gompertz model[J]. Journal of Traffic and Transportation Engineering, 2015, 15(5): 1-7. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2015.05.001
|
[5] |
李东盛. 乳化沥青流变特性的研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
LI Dong-sheng. Rheological properties of asphalt emulsion[D]. Harbin: Harbin Institute of Technology, 2020. (in Chinese)
|
[6] |
邓交龙. 乳化沥青冷再生混合料界面强度机理研究[D]. 南京: 东南大学, 2019.
DENG Jiao-long. Research on interface strength mechanism of emulsified asphalt cold reclaimed mixture[D]. Nanjing: Southeast University, 2019. (in Chinese)
|
[7] |
ZHANG Qin-qin, FAN Wei-yu, WANG Tie-zhu, et al. Influence of emulsification on the properties of styrene- butadiene-styrene chemically modified bitumens[J]. Construction and Building Materials, 2012, 29: 97-101. doi: 10.1016/j.conbuildmat.2011.09.005
|
[8] |
ABEDINI M, HASSANI A, KAYMANESH M R, et al. The rheological properties of a bitumen emulsion modified with two types of SBR latex[J]. Petroleum Science and Technology, 2016, 34(17/18): 1589-1594.
|
[9] |
HANZ A J, AREGA Z A, BAHIA H U. Rheological behavior of emulsion residues produced by evaporative recovery method[J]. Transportation Research Record, 2010, 2179(1): 102-108. doi: 10.3141/2179-12
|
[10] |
FARRAR M J, SALMANS S T, PLANCHE J P. Recovery and laboratory testing of asphalt emulsion residue: application of the simple aging test (SAT) and 4 mm DSR[J]. Transportation Research Record, 2013, 2370(1): 69-75. doi: 10.3141/2370-09
|
[11] |
MOTAMED A, SALOMON D, SAKIB N, et al. Emulsified asphalt residue recovery and characterization: a combined use of moisture analyzer balance and dynamic shear rheometer[J]. Transportation Research Record, 2014, 2444(1): 88-96. doi: 10.3141/2444-10
|
[12] |
MARASTEANU M O, CLYNE T R. Rheological characterization of asphalt emulsions residues[J]. Journal of Materials in Civil Engineering, 2006, 18(3): 398-407. doi: 10.1061/(ASCE)0899-1561(2006)18:3(398)
|
[13] |
MALLADI H, ASNAKE M, LACROIX A, et al. Low- temperature vacuum drying procedure for rapid asphalt emulsion residue recovery[J]. Transportation Research Record, 2018, 2672(28): 256-265. doi: 10.1177/0361198118791913
|
[14] |
汪德才, 郝培文, 乐金朝, 等. 冷再生用乳化沥青残留物的流变特性[J]. 材料导报, 2020, 34(3): 06081-06087.
WANG De-cai, HAO Pei-wen, YUE Jin-chao, et al. Rheological properties of emulsified asphalt residue for cold regeneration[J]. Materials Reports, 2020, 34(3): 06081-06087. (in Chinese)
|
[15] |
SUN Yang, YUE Jin-chao, WANG Ri-ran, et al. Investigation of the effects of evaporation methods on the high-temperature rheological and fatigue performances of emulsified asphalt residues[J]. Advances in Materials Science and Engineering, 2020, 2020: 1-12.
|
[16] |
ABEDINI M, HASSANI A I, KAYMANESH M R, et al. Multiple stress creep and recovery behavior of SBR-modified bitumen emulsions[J]. Journal of Testing and Evaluation, 2020, 48(4): 3116-3124.
|
[17] |
CHEN Xiao-yang, CHENG Guo-hong, XU Wen. Influence of evaporation temperature on the rheological properties of modified emulsified asphaltic residues[J]. Journal of Nanoparticle Research, 2020, 22(8): 49-52.
|
[18] |
王淋, 郭乃胜, 温彦凯, 等. 改性沥青疲劳破坏判定指标适用性[J]. 交通运输工程学报, 2020, 20(4): 91-106. doi: 10.19818/j.cnki.1671-1637.2020.04.007
WANG Lin, GUO Nai-sheng, WEN Yan-kai, et al. Applicability of determination indexes for fatigue failure of modified asphalt[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 91-106. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.04.007
|
[19] |
WANG Chao, ZHANG Han, CASTORENA C, et al. Identifying fatigue failure in asphalt binder time sweep tests[J]. Construction and Building Materials, 2016, 121: 535-546. doi: 10.1016/j.conbuildmat.2016.06.020
|
[20] |
白琦峰, 钱振东, 赵延庆. 基于流变学的沥青抗疲劳性能评价方法[J]. 北京工业大学学报, 2012, 38(10): 1536-1542. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201210017.htm
BAI Qi-feng, QIAN Zhen-dong, ZHAO Yan-qing. Asphalt fatigue resistance evaluation method based on the rheology[J]. Journal of Beijing University of Technology, 2012, 38(10): 1536-1542. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201210017.htm
|
[21] |
孙大权, 林添坂, 曹林辉. 基于动态剪切流变试验的沥青疲劳寿命分析方法[J]. 建筑材料学报, 2015, 18(2): 346-350. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201502031.htm
SUN Da-quan, LIN Tian-ban, CAO Lin-hui. Evaluation method for fatigue life of asphalt based on dynamic shear rheometer test[J]. Journal of Building Materials, 2015, 18(2): 346-350. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201502031.htm
|
[22] |
HASAN M A, HASAN M M, BAIRGI B K, et al. Utilizing simplified viscoelastic continuum damage model to characterize the fatigue behavior of styrene-butadiene-styrene (SBS) modified binders[J]. Construction and Building Materials, 2019, 200: 159-169. doi: 10.1016/j.conbuildmat.2018.12.048
|
[23] |
UNDERWOOD B S, BAEK C, KIM Y R. Simplified viscoelastic continuum damage model as platform for asphalt concrete fatigue analysis[J]. Transportation Research Record, 2012(2296): 36-45.
|
[24] |
HINTZ C, VELASQUEZ R, JOHNSON C, et al. Modification and validation of linear amplitude sweep test for binder fatigue specification[J]. Transportation Research Record, 2011(2207): 99-106.
|
[25] |
谭忆秋, 郭猛, 曹丽萍. 常用改性剂对沥青粘弹特性的影响[J]. 中国公路学报, 2013, 26(4): 7-15. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201304001.htm
TAN Yi-qiu, GUO Meng, CAO Li-ping. Effects of common modifiers on viscoelastic properties of asphalt[J]. China Journal of Highway and Transport, 2013, 26(4): 7-15. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201304001.htm
|
[26] |
NOTANI M A, NEJAD F M, KHODAⅡ A, et al. Evaluating fatigue resistance of toner- modified asphalt binders using the linear amplitude sweep test[J]. Road Materials and Pavement Design, 2019, 20(8): 1927-1940.
|
[27] |
张含宇, 徐刚, 陈先华, 等. 不同试验方法的老化沥青疲劳性能研究[J]. 建筑材料学报, 2020, 23(1): 168-175.
ZHANG Han-yu, XU Gang, CHEN Xian-hua, et al. Fatigue property of aged asphalt binders using different experimental methods[J]. Journal of Building Materials, 2020, 23(1): 168-175. (in Chinese)
|
[28] |
张倩, 孙好好, 温志广, 等. 基于宏观性能与微观性状确定SBR胶乳在SBR改性乳化沥青中的最佳添加量[J]. 材料科学与工程学报, 2018, 36(2): 305-310. https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201802027.htm
ZHANG Qian, SUN Hao-hao, WEN Zhi-guang, et al. Determination of optimum SBR latex content in SBR modified asphalt emulsion based on macro and micro characters[J]. Journal of Materials Science and Engineering, 2018, 36(2): 305-310. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLKX201802027.htm
|
[29] |
梁波, 兰芳, 郑健龙. 沥青的老化机理与疲劳性能关系的研究进展[J]. 材料导报, 2021, 35(9): 9083- 9096.
LIANG Bo, LAN Fang, ZHENG Jian-long. Research and development of relationship between aging mechanism and fatigue properties of asphalt[J]. Materials Reports, 2021, 35(9): 9083-9096.
|
[30] |
罗正斌. 沥青用SBS胶乳的制备及其在微表处中的应用[D]. 西安: 长安大学, 2019.
LUO Zheng-bin. Preparation of SBS latex for asphalt and its application in micro-surfacing[D]. Xi'an: Chang'an University, 2019. (in Chinese)
|
[31] |
王勇, 侯芸, 张艳红. SBS改性与SBR改性微表处体系差异及机理研究[J]. 武汉理工大学学报, 2021, 43(6): 28-33, 60. https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY202106005.htm
WANG Yong, HOU Yun, ZHANG Yan-hong. Study on system difference and mechanism of SBS modification and SBR modification micro-surfacing[J]. Journal of Wuhan University of Technology, 2021, 43(6): 28-33, 60. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WHGY202106005.htm
|
[32] |
ZHANG Ji, WANG Jun-long, WU Yi-qian. et al. Preparation and properties of organic palygorskite SBR/organic palygorskite compound and asphalt modified with the compound[J]. Construction and Building Materials, 2008, 22(8): 1820-1830.
|