Citation: | LI Feng, ZHANG Rong-rong, ZHOU Si-qi, YANG Zhan-ning. Preparation and characterization of carbon nanotubes reinforced volcanic ash-based geopolymer[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 153-165. doi: 10.19818/j.cnki.1671-1637.2023.02.011 |
[1] |
付立娟, 杨勇, 卢静华. 水泥工业碳达峰与碳中和前景分析[J]. 中国建材科技, 2021, 30(4): 80-84. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKJ202104025.htm
FU Li-juan, YANG Yong, LU Jing-hua. Prospect analysis of carbon peaking and carbon neutralization in cement industry[J]. China Building Materials Science and Technology, 2021, 30(4): 80-84. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCKJ202104025.htm
|
[2] |
FEIZ R, AMMENBERG J, BAAS L, et al. Improving the CO2 performance of cement, Part Ⅰ: utilizing life-cycle assessment and key performance indicators to assess development within the cement industry[J]. Journal of Cleaner Production, 2015, 98: 272-281. doi: 10.1016/j.jclepro.2014.01.083
|
[3] |
DAVIDOVITS J. Global warming impact on the cement and aggregates industries[J]. World Resource Review, 1994, 6(2): 263-278.
|
[4] |
KANTARCI F, TÜRKMEN İ, EKINCI E. Optimization of production parameters of geopolymer mortar and concrete: a comprehensive experimental study[J]. Construction and Building Materials, 2019, 228: 116770. doi: 10.1016/j.conbuildmat.2019.116770
|
[5] |
DAVIDOVITS J. Geopolymers[J]. Journal of Thermal Analysis, 1991, 37(8): 1633-1656. doi: 10.1007/BF01912193
|
[6] |
DUXSON P, MALLICOAT S W, LUKEY G C, et al. The effect of alkali and Si/Al ratio on the development of mechanical properties of metakaolin-based geopolymers[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 292(1): 8-20.
|
[7] |
SHI Xiao-shuang, WANG Qing-yuan, ZHAO Xiao-ling, et al. Discussion on properties and microstructure of geopolymer concrete containing fly ash and recycled aggregate[J]. Advanced Materials Research, 2012, 450-451: 1577-1583. doi: 10.4028/www.scientific.net/AMR.450-451.1577
|
[8] |
DAVIDOVITS J. Geopolymer chemistry and sustainable development[C]//Geopolymer Institute: Proceedings of the World Congress Geopolymer. Saint-Quentin: Geopolymer Institute, 2005: 9-17.
|
[9] |
EL-GAMAL S M A, SELIM F A. Utilization of some industrial wastes for eco-friendly cement production[J]. Sustainable Materials and Technologies, 2017, 12: 9-17.
|
[10] |
JIANG Chen-hui, WANG Ai-ying, BAO Xu-fan, et al. A review on geopolymer in potential coating application: materials, preparation and basic properties[J]. Journal of Building Engineering, 2020, 32: 101734. doi: 10.1016/j.jobe.2020.101734
|
[11] |
ALANAZI H, YANG Mi-jia, ZHANG Da-lu, et al. Bond strength of PCC pavement repairs using metakaolin-based geopolymer mortar[J]. Cement and Concrete Composites, 2016, 65: 75-82.
|
[12] |
HUSEIEN G F, MIRZA J, ISMAIL M, et al. Geopolymer mortars as sustainable repair material: a comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2017, 80: 54-74. doi: 10.1016/j.rser.2017.05.076
|
[13] |
徐建军, 吴开胜, 赵大军. 用于道路修复加固的地聚合物注浆材料的研制[J]. 新型建筑材料, 2016, 43(3): 26-28. doi: 10.3969/j.issn.1001-702X.2016.03.007
XU Jian-jun, WU Kai-sheng, ZHAO Da-jun. Development of geopolymer grouting material for road repair and reinforcement[J]. New Building Materials, 2016, 43(3): 26-28. (in Chinese) doi: 10.3969/j.issn.1001-702X.2016.03.007
|
[14] |
ZHOU Si-qi, LU Chen-hong, ZHU Xing-yi, et al. Upcycling of natural volcanic resources for geopolymer: comparative study on synthesis, reaction mechanism and rheological behavior[J]. Construction and Building Materials, 2021, 268: 121184. doi: 10.1016/j.conbuildmat.2020.121184
|
[15] |
DJOBO J N Y, ELIMBI A, TCHAKOUTÉ H K, et al. Volcanic ash-based geopolymer cements/concretes: the current state of the art and perspectives[J]. Environmental Science and Pollution Research, 2017, 24(5): 4433-4446. doi: 10.1007/s11356-016-8230-8
|
[16] |
IBRAHIM M, JOHARI M A M, MASLEHUDDIN M, et al. Influence of composition and concentration of alkaline activator on the properties of natural-pozzolan based green concrete[J]. Construction and Building Materials, 2019, 201: 186-195. doi: 10.1016/j.conbuildmat.2018.12.117
|
[17] |
WANG Kai-tuo, LEMOUGNA P N, TANG Qing, et al. Lunar regolith can allow the synthesis of cement materials with near-zero water consumption[J]. Gondwana Research, 2017, 44: 1-6. doi: 10.1016/j.gr.2016.11.001
|
[18] |
KONSTA-GDOUTOS M S, METAXA Z S, SHAH S P. Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites[J]. Cement and Concrete Composites, 2010, 32(2): 110-115. doi: 10.1016/j.cemconcomp.2009.10.007
|
[19] |
PAN Z, SANJAYAN J G, RANGAN B V. Fracture properties of geopolymer paste and concrete[J]. Magazine of Concrete Research, 2011, 63(10): 763-771. doi: 10.1680/macr.2011.63.10.763
|
[20] |
BAI Tao, LIU Bo-wen, WU Yan-guang, et al. Mechanical properties of metakaolin-based geopolymer with glass fiber reinforcement and vibration preparation[J]. Journal of Non-Crystalline Solids, 2020, 544: 120173. doi: 10.1016/j.jnoncrysol.2020.120173
|
[21] |
EL-SAYED T A, SHAHEEN Y B I. Flexural performance of recycled wheat straw ash-based geopolymer RC beams and containing recycled steel fiber[J]. Structures, 2020, 28: 1713-1728. doi: 10.1016/j.istruc.2020.10.013
|
[22] |
GUO Xiao-lu, PAN Xue-jiao. Mechanical properties and mechanisms of fiber reinforced fly ash-steel slag based geopolymer mortar[J]. Construction and Building Materials, 2018, 179: 633-641. doi: 10.1016/j.conbuildmat.2018.05.198
|
[23] |
SINGH N B, SAXENA S K, KUMAR M. Effect of nanomaterials on the properties of geopolymer mortars and concrete[J]. Materials Today: Proceedings, 2018, 5(3): 9035-9040. doi: 10.1016/j.matpr.2017.10.018
|
[24] |
LI Zhi-peng, FEI Ming-en, HUYAN Chen-xi, et al. Nano-engineered, fly ash-based geopolymer composites: an overview[J]. Resources, Conservation and Recycling, 2021, 168: 105334. doi: 10.1016/j.resconrec.2020.105334
|
[25] |
ABBASI S M, AHMADI H, KHALAJ G, et al. Microstructure and mechanical properties of a metakaolinite-based geopolymer nanocomposite reinforced with carbon nanotubes[J]. Ceramics International, 2016, 42(14): 15171-15176. doi: 10.1016/j.ceramint.2016.06.080
|
[26] |
SAAFI M, ANDREW K, TANG P L, et al. Multifunctional properties of carbon nanotube/fly ash geopolymeric nanocomposites[J]. Construction and Building Materials, 2013, 49: 46-55. doi: 10.1016/j.conbuildmat.2013.08.007
|
[27] |
LI Fa-ping, YANG Zhe-ming, ZHENG Ao-han, et al. Properties of modified engineered geopolymer composites incorporating multi-walled carbon nanotubes(MWCNTs) and granulated blast furnace slag(GBFS)[J]. Ceramics International, 2021, 47(10): 14244-14259. doi: 10.1016/j.ceramint.2021.02.008
|
[28] |
LI Fa-ping, LIU Li-sheng, YANG Zhe-ming, et al. Physical and mechanical properties and micro characteristics of fly ash-based geopolymer paste incorporated with waste granulated blast furnace slag (GBFS) and functionalized multi-walled carbon nanotubes (MWCNTs)[J]. Journal of Hazardous Materials, 2021, 401: 123339. doi: 10.1016/j.jhazmat.2020.123339
|
[29] |
KHATER H M, ABD EL GAWAAD H A. Characterization of alkali activated geopolymer mortar doped with MWCNT[J]. Construction and Building Materials, 2016, 102: 329-337. doi: 10.1016/j.conbuildmat.2015.10.121
|
[30] |
ROVNANÍK P, ŠIMONOVÁ H, TOPOLÁŘ L, et al. Carbon nanotube reinforced alkali-activated slag mortars[J]. Construction and Building Materials, 2016, 119: 223-229. doi: 10.1016/j.conbuildmat.2016.05.051
|
[31] |
ROVNANÍK P, ŠIMONOVÁ H, TOPOLÁŘ L, et al. Effect of carbon nanotubes on the mechanical fracture properties of fly ash geopolymer[J]. Procedia Engineering, 2016, 151: 321-328. doi: 10.1016/j.proeng.2016.07.360
|
[32] |
KONSTA-GDOUTOS M S, METAXA Z S, SHAH S P. Highly dispersed carbon nanotube reinforced cement based materials[J]. Cement and Concrete Research, 2010, 40(7): 1052-1059.
|
[33] |
METAXA Z S, KONSTA-GDOUTOS M S, SHAH S P. Carbon nanofiber cementitious composites: effect of debulking procedure on dispersion and reinforcing efficiency[J]. Cement and Concrete Composites, 2013, 36: 25-32.
|
[34] |
SOUZA D J, YAMASHITA L Y, DRANKA F, et al. Repair mortars incorporating multiwalled carbon nanotubes: shrinkage and sodium sulfate attack[J]. Journal of Materials in Civil Engineering, 2017, 29(12): 04017246.
|
[35] |
ZHAO Li, GUO Xin-li, LIU Yuan-yuan, et al. Investigation of dispersion behavior of GO modified by different water reducing agents in cement pore solution[J]. Carbon, 2018, 127: 255-269.
|
[36] |
DA LUZ G, GLEIZE P J P, BATISTON E R, et al. Effect of pristine and functionalized carbon nanotubes on microstructural, rheological, and mechanical behaviors of metakaolin-based geopolymer[J]. Cement and Concrete Composites, 2019, 104: 103332.
|
[37] |
范杰, 李庚英, 王中坤. 表面处理碳纳米管对水泥砂浆性能影响的研究[J]. 新型建筑材料, 2019, 46(8): 43-47. https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201908012.htm
FAN Jie, LI Geng-ying, WANG Zhong-kun. Effect of surface treatment of carbon nanotubes on the properties of cement mortar[J]. New Building Materials, 2019, 46(8): 43-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXJZ201908012.htm
|
[38] |
GUNASEKARA C, SETUNGE S, LAW D W. Long-term mechanical properties of different fly ash geopolymers[J]. ACI Structural Journal, 2017, 114(3): 743-752.
|
[39] |
LI Li-xiang, LI Feng. The effect of carbonyl, carboxyl and hydroxyl groups on the capacitance of carbon nanotubes[J]. New Carbon Materials, 2011, 26(3): 224-228.
|
[40] |
PYATINA T, SUGAMA T. Use of carbon microfibers for reinforcement of calcium aluminate-class F fly ash cement activated with sodium meta-silicate at up to 300 ℃[J]. The Geothermal Resources Council Transactions, 2015, 39: 209-216.
|
[41] |
LAWLER J S, WILHELM T, ZAMPINI D, et al. Fracture processes of hybrid fiber-reinforced mortar[J]. Materials and Structures, 2003, 36(3): 197-208.
|
[42] |
ZHANG Rong-rong, ZHOU Si-qi, LI Feng, et al. Mechanical and microstructural characterization of carbon nanofiber-reinforced geopolymer nanocomposite based on lunar regolith simulant[J]. Journal of Materials in Civil Engineering, 2022, 34(1): 04021387.
|
[43] |
FEHERVARI A, MACLEOD A J N, GARCEZ E O, et al. On the mechanisms for improved strengths of carbon nanofiber- enriched mortars[J]. Cement and Concrete Research, 2020, 136: 106178.
|
[44] |
WANG Bao-min, ZHANG Yuan, GUO Zhi-qiang, et al. Controlling the optimum surfactants concentrations for dispersing carbon nanofibers in aqueous solution[J]. Russian Journal of Physical Chemistry A, 2013, 87(13): 2253-2259.
|