Citation: | ZHANG Wei-guang, ZHONG Jing-tao, HUYAN Ju, MA Tao, ZHU Jun-qing, HE Liang. Extraction and quantification of pavement alligator crack morphology based on VGG16-UNet semantic segmentation model[J]. Journal of Traffic and Transportation Engineering, 2023, 23(2): 166-182. doi: 10.19818/j.cnki.1671-1637.2023.02.012 |
[1] |
MAEDA H, SEKIMOTO Y, SETO T, et al. Road damage detection and classification using deep neural networks with smartphone images[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(12): 1127-1141. doi: 10.1111/mice.12387
|
[2] |
LI B X, WANG K C P, ZHANG A, et al. Automatic classification of pavement crack using deep convolutional neural network[J]. International Journal of Pavement Engineering, 2020, 21(4): 457-463. doi: 10.1080/10298436.2018.1485917
|
[3] |
ZHANG A, WANG K C P, LI B X, et al. Automated pixel-level pavement crack detection on 3D asphalt surfaces using a deep-learning network[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(10): 805-819. doi: 10.1111/mice.12297
|
[4] |
TANG Fan-long, MA Tao, ZHANG Jun-hui, et al. Integrating three-dimensional road design and pavement structure analysis based on BIM[J]. Automation in Construction, 2020, 113: 103152. doi: 10.1016/j.autcon.2020.103152
|
[5] |
TANG Fan-long, MA Tao, GUAN Yong-sheng, et al. Parametric modeling and structure verification of asphalt pavement based on BIM-ABAQUS[J]. Automation in Construction, 2020, 111: 103066. doi: 10.1016/j.autcon.2019.103066
|
[6] |
曹佳煜. 基于图像处理的路面裂缝自动检测技术研究[D]. 西安: 长安大学, 2014.
CAO Jia-yu. Research on the technology of automatic pavement crack detection based on digital image processing[D]. Xi'an: Chang'an University, 2014. (in Chinese)
|
[7] |
PACHECO-CHERREZ J, CARDENAS D, PROBST O. Measuring crack-type damage features in thin-walled composite beams using denoising and a 2D continuous wavelet transform of mode shapes[J]. Journal of Applied and Computational Mechanics, 2021, 7(1): 355-371.
|
[8] |
李东明, 盖梦野, 李超然, 等. 基于小波域的Contourlet变换法的自适应光学图像去噪算法研究[J]. 激光与光电子学进展, 2015, 52(11): 97-102. https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201511013.htm
LI Dong-ming, GAI Meng-ye, LI Chao-ran, et al. Research on adaptive optics image denoising algorithm based on the wavelet-based contourlet transform[J]. Laser and Optoelectronics Progress, 2015, 52(11): 97-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGDJ201511013.htm
|
[9] |
王世芳, 车艳丽, 李楠, 等. 一种基于多尺度脊边缘的沥青路面裂缝检测算法[J]. 中国公路学报, 2017, 30(4): 32-41. doi: 10.3969/j.issn.1001-7372.2017.04.005
WANG Shi-fang, CHE Yan-li, LI Nan, et al. Asphalt pavement crack detection algorithm based on multi scale ridges[J]. China Journal of Highway and Transport, 2017, 30(4): 32-41. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.04.005
|
[10] |
马文涛, 樊春玲. 基于计算机视觉路面裂缝的识别与测量[J]. 电子测量技术, 2020, 43(19): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-DZCL202019018.htm
MA Wen-tao, FAN Chun-ling. Recognition and measurement of pavement cracks based on computer vision[J]. Electronic Measurement Technology, 2020, 43(19): 85-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZCL202019018.htm
|
[11] |
彭博, 蒋阳升, 韩世凡, 等. 路面裂缝图像自动识别算法综述[J]. 公路交通科技, 2014, 31(7): 19-25. doi: 10.3969/j.issn.1002-0268.2014.07.004
PENG Bo, JIANG Yang-sheng, HAN Shi-fan, et al. A review of automatic pavement crack image recognition algorithms[J]. Journal of Highway and Transportation Research and Development, 2014, 31(7): 19-25. (in Chinese) doi: 10.3969/j.issn.1002-0268.2014.07.004
|
[12] |
张红. 基于图像处理的路面裂缝检测系统研究[D]. 沈阳: 沈阳航空航天大学, 2018.
ZHANG Hong. Research on pavement crack detection system based on image processing[D]. Shenyang: Shenyang Aerospace University, 2018. (in Chinese)
|
[13] |
DU Zhen-yu, YUAN Jie, XIAO Fei-peng, et al. Application of image technology on pavement distress detection: a review[J]. Measurement, 2021, 184: 109900. doi: 10.1016/j.measurement.2021.109900
|
[14] |
MEI Qi-pei, GÜL M, AZIM M. R. Densely connected deep neural network considering connectivity of pixels for automatic crack detection[J]. Automation in Construction, 2020, 110: 103018. doi: 10.1016/j.autcon.2019.103018
|
[15] |
张伟光, 钟靖涛, 于建新, 等. 基于机器学习和图像处理的路面裂缝检测技术研究[J]. 中南大学学报(自然科学版), 2021, 52(7): 2402-2415. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202107028.htm
ZHANG Wei-guang, ZHONG Jing-tao, YU Jian-xin, et al. Research on pavement crack detection technology based on convolution neural network[J]. Journal of Central South University (Science and Technology), 2021, 52(7): 2402-2415. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202107028.htm
|
[16] |
ZHU Jun-qing, ZHONG Jing-tao, MA Tao, et al. Pavement distress detection using convolutional neural networks with images captured via UAV[J]. Automation in Construction, 2022, 133: 103991. doi: 10.1016/j.autcon.2021.103991
|
[17] |
CHA Y J, CHOI W, BÜYÜKÖZTÜRK O. Deep learning- based crack damage detection using convolutional neural networks[J]. Computer-Aided Civil and Infrastructure Engineering, 2017, 32(5): 361-378. doi: 10.1111/mice.12263
|
[18] |
DU Yu-chuan, PAN Ning, XU Zi-hao, et al. Pavement distress detection and classification based on YOLO network[J]. International Journal of Pavement Engineering, 2021, 22(13): 1659-1672. doi: 10.1080/10298436.2020.1714047
|
[19] |
YANG Xin-cong, LI Heng, YU Yan-tao, et al. Automatic pixel-level crack detection and measurement using fully convolutional network[J]. Computer-Aided Civil and Infrastructure Engineering, 2018, 33(12): 1090-1109. doi: 10.1111/mice.12412
|
[20] |
SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651. doi: 10.1109/TPAMI.2016.2572683
|
[21] |
RONNEBERGER O, FISCHER P, BROX T. U-Net: convolutional networks for biomedical image segmentation[C]//S pringer. Proceedings of International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer, 2015: 234-241.
|
[22] |
BADRINARAYANAN V, KENDALL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495. doi: 10.1109/TPAMI.2016.2644615
|
[23] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(4): 834-848. doi: 10.1109/TPAMI.2017.2699184
|
[24] |
ZOU Qin, ZHANG Zheng, LI Qing-quan, et al. DeepCrack: Learning hierarchical convolutional features for crack detection[J]. IEEE Transactions on Image Processing, 2019, 28(3): 1498-1512. doi: 10.1109/TIP.2018.2878966
|
[25] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. doi: 10.1145/3065386
|
[26] |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions[C]//IEEE. Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2015: 1-9.
|
[27] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//ICLR. 3rd International Conference on Learning Representations. Washington DC: ICLR, 2015: 1-14.
|
[28] |
HE Kai-ming, ZHANG Xiang-yu, REN Shao-qing, et al. Deep residual learning for image recognition[C]//IEEE. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 770-778.
|
[29] |
SHI Ji-yuan, DANG Ji, CUI Mi-da, et al. Improvement of damage segmentation based on pixel-level data balance using VGG-UNet[J]. Applied Sciences, 2021, 11: 518. doi: 10.3390/app11020518
|
[30] |
LIU Z, SONG Y Q, SHENG V S, et al. Liver CT sequence segmentation based with improved U-Net and graph cut[J]. Expert Systems with Applications, 2019, 126: 54-63. doi: 10.1016/j.eswa.2019.01.055
|
[31] |
LIAN Sheng, LUO Zhi-ming, ZHONG Zhun, et al. Attention guided U-Net for accurate iris segmentation[J]. Journal of Visual Communication and Image Representation, 2018, 56: 296-304. doi: 10.1016/j.jvcir.2018.10.001
|
[32] |
LI Gang, MA Biao, HE Shuan-hai, et al. Automatic tunnel crack detection based on U-Net and a convolutional neural network with alternately updated clique[J]. Sensors, 2020, 20(3): 717. doi: 10.3390/s20030717
|
[33] |
朱苏雅, 杜建超, 李云松, 等. 采用U-Net卷积网络的桥梁裂缝检测方法[J]. 西安电子科技大学学报, 2019, 46(4): 35-42. https://www.cnki.com.cn/Article/CJFDTOTAL-XDKD201904006.htm
ZHU Su-ya, DU Jian-chao, LI Yun-song, et al. Method for bridge crack detection based on the U-Net convolutional networks[J]. Journal of Xidian University, 2019, 46(4): 35-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDKD201904006.htm
|
[34] |
王海, 蔡柏湘, 蔡英凤, 等. 基于语义分割网络的路面积水与湿滑区域检测[J]. 汽车工程, 2021, 43(4): 485-491. https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202104007.htm
WANG Hai, CAI Bai-xiang, CAI Ying-feng, et al. Detection of water-covered and wet areas on road pavement based on semantic segmentation network[J]. Automotive Engineering, 2021, 43(4): 485-491. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCGC202104007.htm
|
[35] |
LIU Zheng-qing, CAO Yi-wen, WANG Yi-ze, et al. Computer vision-based concrete crack detection using U-net fully convolutional networks[J]. Automation in Construction, 2019, 104: 129-139. doi: 10.1016/j.autcon.2019.04.005
|
[36] |
HUYAN Ju, LI Wei, TIGHE S, et al. CrackU-net: a novel deep convolutional neural network for pixelwise pavement crack detection[J]. Structural Control and Health Monitoring, 2020, 27: e2551.
|
[37] |
沙爱民, 童峥, 高杰. 基于卷积神经网络的路表病害识别与测量[J]. 中国公路学报, 2018, 31(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201801002.htm
SHA Ai-min, TONG Zheng, GAO Jie. Recognition and measurement of pavement disasters based on convolutional neural networks[J]. China Journal of Highway and Transport, 2018, 31(1): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201801002.htm
|
[38] |
李海东. 基于深度学习和无人机的重交通荷载公路病害定位和测量研究[D]. 西安: 长安大学, 2019.
LI Hai-dong. Research on pavement distresses location and measurement under the heavy traffic using deep learning and UAV[D]. Xi'an: Chang'an University, 2019. (in Chinese)
|
[39] |
晏班夫, 徐观亚, 栾健, 等. 基于Faster R-CNN与形态法的路面病害识别[J]. 中国公路学报, 2021, 34(9): 181-193. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202109016.htm
YAN Ban-fu, XU Guan-ya, LUAN Jian, et al. Pavement distress detection based on Faster R-CNN and morphological operations[J]. China Journal of Highway and Transport, 2021, 34(9): 181-193. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202109016.htm
|
[40] |
LIU Jing-wei, YANG Xu, LAU S, et al. Automated pavement crack detection and segmentation based on two-step convolutional neural network[J]. Computer-Aided Civil and Infrastructure Engineering, 2020, 35(11): 1291-1305.
|
[41] |
孙朝云, 马志丹, 李伟, 等. 基于深度卷积神经网络融合模型的路面裂缝识别方法[J]. 长安大学学报(自然科学版), 2020, 40(4): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL202004002.htm
SUN Zhao-yun, MA Zhi-dan, LI Wei, et al. Pavement crack identification method based on deep convolutional neural network fusion model[J]. Journal of Chang'an University (Natural Science Edition), 2020, 40(4): 1-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL202004002.htm
|
[42] |
王建明, 黎向锋, 叶磊, 等. 基于信道注意结构的生成对抗网络医学图像去模糊[J]. 计算机科学, 2021, 48(S1): 101-106. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2021S1018.htm
WANG Jian-ming, LI Xiang-feng, YE Lei, et al. Medical image deblur using generative adversarial networks with channel attention[J]. Computer Science, 2021, 48(S1): 101-106. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA2021S1018.htm
|
[43] |
ZHAO Heng-shuang, SHI Jian-ping, QI Xiao-juan, et al. Pyramid scene parsing network[C]//IEEE. Proceedings of 30th IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 6230-6239.
|
[44] |
CHEN L C, ZHU Y C, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]//Springer. 15th European Conference on Computer Vision (ECCV). Berlin: Springer, 2018: 833-851.
|
[45] |
YANG Fan, ZHANG Lei, YU Si-jia, et al. Feature pyramid and hierarchical boosting network for pavement crack detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(4): 1525-1535.
|
[46] |
ZOU Qin, CAO Yu, LI Qing-zhou, et al. CrackTree: automatic crack detection from pavement images[J]. Pattern Recognition Letters, 2012, 33(3): 227-238.
|
[47] |
MEI Qi-pei, GÜL M. A cost effective solution for pavement crack inspection using cameras and deep neural networks[J]. Construction and Building Materials, 2020, 256: 119397.
|
[48] |
彭博, 蒋阳升, 蒲云. 基于数字图像处理的路面裂缝自动分类算法[J]. 中国公路学报, 2014, 27(9): 10-18, 24. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201409003.htm
PENG Bo, JIANG Yang-sheng, PU Yun. Automated classification algorithm of pavement crack based on digital image processing[J]. China Journal of Highway and Transport, 2014, 27(9): 10-18, 24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201409003.htm
|
[49] |
吴文周, 李利番, 王结臣. 平面点集凸包Graham算法的改进[J]. 测绘科学, 2010, 35(6): 123-125. https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201006044.htm
WU Wen-zhou, LI Li-fan, WANG Jie-chen. An improved Graham algorithm for determining the convex hull of planar points set[J]. Science of Surveying and Mapping, 2010, 35(6): 123-125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201006044.htm
|
[50] |
王世兵. 路面裂缝检测系统关键技术的研究与开发[D]. 济南: 济南大学, 2019.
WANG Shi-bing. Research and development of key technologies for pavement crack detection system[D]. Jinan: University of Jinan, 2019. (in Chinese)
|