Citation: | YAO Jun-feng, HE Rui, SHI Tong-tong, WANG Ping, ZHAO Xiang-mo. Review on machine learning-based traffic flow prediction methods[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 44-67. doi: 10.19818/j.cnki.1671-1637.2023.03.003 |
[1] |
WANG Yi-bing, YU Xiang-hua, ZHANG Si-yu, et al. Freeway traffic control in presence of capacity drop[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(3): 1497-1516. doi: 10.1109/TITS.2020.2971663
|
[2] |
曾筠程, 邵敏华, 孙立军, 等. 基于有向图卷积神经网络的交通预测与拥堵管控[J]. 中国公路学报, 2021, 34(12): 239-248. doi: 10.3969/j.issn.1001-7372.2021.12.018
ZENG Yun-cheng, SHAO Min-hua, SUN Li-jun, et al. Traffic prediction and congestion control based on directed graph convolution neural network[J]. China Journal of Highway and Transport, 2021, 34(12): 239-248. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.12.018
|
[3] |
张伟斌, 张帅, 郭海锋, 等. 基于交通因子状态网络的城市交叉口交通流预测[J]. 中国公路学报, 2021, 34(12): 217-228. doi: 10.3969/j.issn.1001-7372.2021.12.016
ZHANG Wei-bin, ZHANG Shuai, GUO Hai-feng, et al. Traffic flow prediction of urban intersections based on a traffic factor state network[J]. China Journal of Highway and Transport, 2021, 34(12): 217-228. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.12.016
|
[4] |
SHI Xiao-ming, QI Heng, SHEN Yan-ming, et al. A spatial- temporal attention approach for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(8): 4909-4918. doi: 10.1109/TITS.2020.2983651
|
[5] |
宋国杰, 胡程, 谢昆青, 等. 面向实时短时交通流预测的过程神经元网络建模[J]. 交通运输工程学报, 2009, 9(5): 73-77. doi: 10.3321/j.issn:1671-1637.2009.05.013
SONG Guo-jie, HU Cheng, XIE Kun-qing, et al. Process neural network modeling for real-time short-term traffic flow prediction[J]. Journal of Traffic and Transportation Engineering, 2009, 9(5): 73-77. (in Chinese) doi: 10.3321/j.issn:1671-1637.2009.05.013
|
[6] |
马永杰, 程时升, 马芸婷, 等. 卷积神经网络及其在智能交通系统中的应用综述[J]. 交通运输工程学报, 2021, 21(4): 48-71. doi: 10.19818/j.cnki.1671-1637.2021.04.003
MA Yong-jie, CHENG Shi-sheng, MA Yun-ting, et al. Review of convolutional neural network and its application in intelligent transportation system[J]. Journal of Traffic and Transportation Engineering, 2021, 21(4): 48-71. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.04.003
|
[7] |
《中国公路学报》编辑部. 中国交通工程学术研究综述·2016[J]. 中国公路学报, 2016, 29(6): 1-161. doi: 10.3969/j.issn.1001-7372.2016.06.001
Editorial Department of China Journal of Highway and Transport. Review on China's Traffic engineering research progress· 2016[J]. China Journal of Highway and Transport, 2016, 29(6): 1-161. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.06.001
|
[8] |
陈俊杰, 上官伟, 蔡伯根, 等. 交通流特征深度认知的车队运行参数优化方法[J]. 中国公路学报, 2020, 33(11): 264-274. doi: 10.3969/j.issn.1001-7372.2020.11.025
CHEN Jun-jie, SHANGGUAN Wei, CAI Bai-gen, et al. Platoon operating-parameter optimization method based on deep cognition of traffic-flow features[J]. China Journal of Highway and Transport, 2020, 33(11): 264-274. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.11.025
|
[9] |
LI Wen-gen, CAO Jian-nong, GUAN Ji-hong, et al. A general framework for unmet demand prediction in on-demand transport services[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(8): 2820-2830. doi: 10.1109/TITS.2018.2873092
|
[10] |
LIN Lu, LI Jian-xin, CHEN Feng, et al. Road traffic speed prediction: a probabilistic model fusing multi-source data[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(7): 1310-1323. doi: 10.1109/TKDE.2017.2718525
|
[11] |
GONG Yong-shun, LI Zhi-bin, ZHANG Jian, et al. Network-wide crowd flow prediction of Sydney trains via customized online non-negative matrix factorization[C]//ACM. Proceedings of the 27th ACM International Conference on Information and Knowledge Management. New York: ACM, 2018: 1243-1252.
|
[12] |
COVER T, HART P. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967, 13(1): 21-27. doi: 10.1109/TIT.1967.1053964
|
[13] |
CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
|
[14] |
PEARL J. Probabilistic reasoning in intelligent systems: networks of plausible inference[J]. Artificial Intelligence, 1991, 48(1): 117-124. doi: 10.1016/0004-3702(91)90084-W
|
[15] |
GONG Xiao-yan, WANG Fei-yue. Three improvements on KNN-NPR for traffic flow forecasting[C]//IEEE. The IEEE 5th International Conference on Intelligent Transportation Systems. New York: IEEE, 2003: 736-740.
|
[16] |
TONG Jian-cheng, GU Xiang, ZHANG Miao, et al. Traffic flow prediction based on improved SVR for VANET[C]//IEEE. 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering(AEMCSE). New York: IEEE, 2021: 402-405.
|
[17] |
SUN Shi-liang, ZHANG Chang-shui, YU Guo-qiang. A bayesian network approach to traffic flow forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2006, 7(1): 124-132. doi: 10.1109/TITS.2006.869623
|
[18] |
ALEXANDER TEDJOPURNOMO D, BAO Zhi-feng, ZHENG Bai-hua, et al. A survey on modern deep neural network for traffic prediction: trends, methods and challenges[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(4): 1544-1561.
|
[19] |
DOUGHERTY M. A review of neural networks applied to transport[J]. Transportation Research Part C: Emerging Technologies, 1995, 3(4): 247-260. doi: 10.1016/0968-090X(95)00009-8
|
[20] |
VYTHOULKAS P. Alternative approaches to short term traffic forecasting for use in driver information systems[J]. Transportation and Traffic Theory, 1993, 12: 485-506.
|
[21] |
HUA Jiu-yi, FAGHRI A. Applications of artificial neural networks to intelligent vehicle-highway systems[J]. Transportation Research Record, 1994, 1453: 83-90.
|
[22] |
WU Qing, JIANG Zhe, HONG Ke-wei, et al. Tensor-based recurrent neural network and multi-modal prediction with its applications in traffic network management[J]. IEEE Transactions on Network and Service Management, 2021, 18(1): 780-792. doi: 10.1109/TNSM.2021.3056912
|
[23] |
DU Yi, CUI Na-xin, LI Hui-Xin, et al. The vehicle's velocity prediction methods based on RNN and LSTM neural network[C]//IEEE. Proceedings of 2020 Chinese Control and Decision Conference(CCDC). New York: IEEE, 2020: 99-102.
|
[24] |
MA Xiao-lei, TAO Zhi-min, WANG Yin-hai, et al. Long short- term memory neural network for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C: Emerging Technologies, 2015, 54: 187-197. doi: 10.1016/j.trc.2015.03.014
|
[25] |
CHUNG J Y, GULCEHRE C, CHO K H, et al. Empirical evaluation of gated recurrent neural networks on sequence modeling[J]. ArXiv Preprint, 2014, DOI:
|
[26] |
FU Rui, ZHANG Zuo, LI Li, et al. Using LSTM and GRU neural network methods for traffic flow prediction[C]//IEEE. 31st Youth Academic Annual Conference of Chinese Association of Automation. New York: IEEE, 2016: 324-328.
|
[27] |
ZHAO Zheng, CHEN Wei-hai, WU Xing-ming, et al. LSTM network: a deep learning approach for short-term traffic forecast[J]. IET Intelligent Transport Systems. 2017, 11(2): 68-75. doi: 10.1049/iet-its.2016.0208
|
[28] |
ZHU Ling-xue, LAPTEV N. Deep and confident prediction for time series at uber[C]//IEEE. 2017 IEEE International Conference on Data Mining Workshops (ICDMW). New York: IEEE, 2017: 103-110.
|
[29] |
TIAN Yan, ZHANG Kai-li, LI Jian-yuan, et al. LSTM-based traffic flow prediction with missing data[J]. Neurocomputing, 2018, 318: 297-305. doi: 10.1016/j.neucom.2018.08.067
|
[30] |
PAN Zhe-yi, LIANG Yu-xuan, WANG Wei-feng, et al. Urban traffic prediction from spatio-temporal data using deep meta learning[C]//ACM. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 1720-1730.
|
[31] |
DESHPANDE P, SARAWAGI S. Streaming adaptation of deep forecasting models using adaptive recurrent units[C]//ACM. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 1560-1568.
|
[32] |
YANG Bai-lin, SUN Shu-lin, LI Jian-yuan, et al. Traffic flow prediction using LSTM with feature enhancement[J]. Neurocomputing, 2019, 332: 320-327. doi: 10.1016/j.neucom.2018.12.016
|
[33] |
谭满春, 冯荦斌, 徐建闽, 等. 基于ARIMA与人工神经网络组合模型的交通流预测[J]. 中国公路学报, 2007, 20(4): 118-121. doi: 10.3321/j.issn:1001-7372.2007.04.021
TAN Man-chun, FENG Nao-bin, XU Jian-min, et al. Traffic flow prediction based on hybrid ARIMA and ANN model[J]. China Journal of Highway and Transport, 2007, 20(4): 118-121. (in Chinese) doi: 10.3321/j.issn:1001-7372.2007.04.021
|
[34] |
TIAN Yin, WEI Chen-chen, XU Dong-wei, et al. Traffic flow prediction based on stack autoencoder and long short-term memory network[C]//IEEE. 2020 IEEE 3rd International Conference on Automation, Electronics and Electrical Engineering (AUTEEE). New York: IEEE, 2020: 385-388.
|
[35] |
LI Ya-guang, SHAHABI C. A brief overview of machine learning methods for short-term traffic forecasting and future directions[J]. SIGSPATIAL Special, 2018, 10(1): 3-9. doi: 10.1145/3231541.3231544
|
[36] |
MA Xiao-lei, DAI Zhuang, HE Zheng-bing, et al. Learning traffic as images: a deep convolutional neural network for large-scale transportation network speed prediction[J]. Sensors, 2017, 17(4): 818. doi: 10.3390/s17040818
|
[37] |
CAO Xiao-fang, ZHONG Yu-hua, ZHOU Yun, et al. Interactive temporal recurrent convolution network for traffic prediction in data centers[J]. IEEE Access, 2017, 6: 5276-5289.
|
[38] |
GUO Shen-nan, LIN You-fang, LI Shi-jie, et al. Deep spatial- temporal 3D convolutional neural networks for traffic data forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3913-3926. doi: 10.1109/TITS.2019.2906365
|
[39] |
YAO Hua-xiu, TANG Xian-feng, WEI Hua, et al. Revisiting spatial-temporal similarity: a deep learning framework for traffic prediction[C]//AAAI. Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2019: 5668-5675.
|
[40] |
WU Yuan-kai, TAN Hua-chun. Short-term traffic flow forecasting with spatial-temporal correlation in a hybrid deep learning framework[J]. ArXiv Preprint, 2016, DOI:
|
[41] |
ZHANG Jun-bo, ZHENG Yu, QI De-kang, et al. DNN-based prediction model for spatio-temporal data[C]//ACM. Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2016: 1-4.
|
[42] |
YAO Hua-xin, WU Fei, KE Jin-tao, et al. Deep multi-view spatial-temporal network for taxi demand prediction[C]//AAAI. Proceedings of the 32nd AAAI conference on artificial intelligence. Palo Alto: AAAI, 2018: 2588-2595.
|
[43] |
WANG Dong, ZHANG Jun-bao, CAO Wei, et a. When will you arrive? Estimating travel time based on deep neural networks[C]//AAAI. Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2018: 2500-2507.
|
[44] |
LIN Zi-qian, FENG Jie, LU Zi-yang, et al. DeepSTN+: context-aware spatial-temporal neural network for crowd flow prediction in metropolis[C]//AAAI. Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2019: 1020-1027.
|
[45] |
ZHAO Jun-hui, ZHU Tian-qi, ZHAO Rui-dong, et al. Layerwise recurrent autoencoder for real-world traffic flow forecasting[C]//Springer. Proceedings of 9th International Conference on Intelligence Science and Big Data Engineering. Berlin: Springer, 2019: 78-88.
|
[46] |
LYU Zhong-jian, XU Jia-jie, ZHENG Kai, et al. LC-RNN: a deep learning model for traffic speed prediction[C]//IJCAI. Proceedings of the 27th International Joint Conference on Artificial Intelligence. Freiburg: IJCAI, 2018: 3470-3476.
|
[47] |
LAI Guo-kun, CHANG Wei-cheng, YANG Yi-ming, et al. Modeling long-and short-term temporal patterns with deep neural networks[C]//ACM. Proceedings of the 41st International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2018: 95-104.
|
[48] |
ZONOOZI A, KIM J J, LI Xiao-li, et al. Periodic-CRN: a convolutional recurrent model for crowd density prediction with recurring periodic patterns[C]//IJCAI. Proceedings of the 27th International Joint Conference on Artificial Intelligence. Freiburg: IJCAI, 2018: 3732-3738.
|
[49] |
KE Jin-tao, ZHENG Hong-yu, YANG Hai, et al. Short- term forecasting of passenger demand under on-demand ride services: a spatio-temporal deep learning approach[J]. Transportation Research Part C: Emerging Technologies, 2017, 85: 591-608. doi: 10.1016/j.trc.2017.10.016
|
[50] |
WANG Le-ye, GENG Xu, MA Xiao-juan, et al. Cross-city transfer learning for deep spatio-temporal prediction[C]//IJCAI. Proceedings of the 28th International Joint Conference on Artificial Intelligence. Freiburg: IJCAI, 2019: 1893-1899.
|
[51] |
ZANG Di, LING Jia-wei, WEI Zhi-hua, et al. Long-term traffic speed prediction based on multiscale spatio-temporal feature learning network[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(10): 3700-3709.
|
[52] |
YE Jun-chen, SUN Lei-lei, DU Bo-wen, et al. Co-prediction of multiple transportation demands based on deep spatio-temporal neural network[C]//ACM. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 305-313.
|
[53] |
JIANG Ren-he, SONG Xuan, HUANG Dou, et al. Deep urban event: a system for predicting citywide crowd dynamics at big events[C]//ACM. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 2114-2122.
|
[54] |
DEFFERRARD M, BRESSON X, VANDERGHEYNST P. Convolutional neural networks on graphs with fast localized spectral filtering[C]//NIPS. 30th Conference on Neural Information Processing Systems. San Diego: NIPS, 2016: 3844-3852.
|
[55] |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[C]//ICLR. The 2017 International Conference on Learning Representations. New York: ICLR, 2017: 1-14.
|
[56] |
XU Bing-bing, SHEN Hua-wei, CAO Qi, et al. Graph wavelet neural network[C]//ICLR. 7th International Conference on Learning Representations. New York: ICLR, 2019: 1-13.
|
[57] |
NIEPERT M, AHMED M, KUTZKOV K. Learning convolutional neural networks for graphs[C]//ICML. Proceedings of the 33rd International Conference on Machine Learning. New York: ICML, 2016: 2014-2023.
|
[58] |
HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]//NIPS. 31st Conference on Neural Information Processing Systems. San Diego: NIPS, 2017: 1-11.
|
[59] |
VELICKOVIC P, CUCURULL G, CASANOVA A, et al. Graph attention networks[C]//ICLR. Proceedings of the 6th International Conference on Learning Representations. New York: ICLR, 2018: 1-12.
|
[60] |
MONTI F, BOSCAINI D, MASCI J, et al. Geometric deep learning on graphs and manifolds using mixture model CNNs[C]// IEEE. 2017 Conference on Computer Vision and Pattern Recognition (CVPR). New York: IEEE, 2017: 5425-5434.
|
[61] |
XU Bing-bing, SHEN Hua-wei, CAO Qi, et al. Graph convolutional networks using heat kernel for semi-supervised learning[C]//IJCAI. Proceedings of the 28th International Joint Conference on Artificial Intelligence. Freiburg: IJCAI, 2019: 1928-1934.
|
[62] |
SEO Y, DEFFERRARDM, VANDERGHEYNST P, et al. Structured sequence modeling with graph convolutional recurrent networks[C]//Springer. Proceedings of the 25th International Conference on Neural Information Processing (ICONIP). Berlin: Springer, 2018: 362-373.
|
[63] |
LI Ya-guang, YU R, SHAHABI C, et al. Diffusion convolutional recurrent neural network: data-driven traffic forecasting[C]//ICLR. Proceedings of the 6th International Conference on Learning Representations. New York: ICLR, 2018: 1-16.
|
[64] |
WU Zong-han, PAN Shi-rui, LONG Guo-dong, et al. Graph wavenet for deep spatial-temporal graph modeling[C]//IJCAI. Proceedings of the 28th International Joint Conference on Artificial Intelligence. Freiburg: IJCAI, 2019: 1907-1913.
|
[65] |
YU Bing, YIN Hao-teng, ZHU Zhan-xing. Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting[C]//IJCAI. Proceedings of the 27th International Joint Conference on Artificial Intelligence. Freiburg: IJCAI, 2018: 3634-3640.
|
[66] |
GUO Sheng-nan, LIN You-fang, FENG Ning, et al. Attention based spatial-temporal graph convolutional networks for traffic flow forecasting[C]//AAAI. Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2020: 922-929.
|
[67] |
ZHENG Chuan-pan, FAN Xiao-liang, WANG Cheng, et al. GMAN: a graph multi-attention network for traffic prediction[C]// AAAI. Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2020: 1234-1241.
|
[68] |
WANG Xiao-yang, MA Yao, WANG Yi-qi, et al. Traffic flow prediction via spatial temporal graph neural network[C]// ACM. Proceedings of the 29th World Wide Web Conference (WWW). New York: ACM, 2020: 1082-1092.
|
[69] |
CHEN Wei-qi, CHEN Ling, XIE Yu, et al. Multi-Range attentive bicomponent graph convolutional network for traffic forecasting[C]//AAAI. Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2020: 3529-3536.
|
[70] |
CHEN Cen, LI Ken-li, TEO S G, et al. Gated residual recurrent graph neural networks for traffic prediction[C]//AAAI. Proceedings of the 33rd AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2019: 485-492.
|
[71] |
LI Meng-zhang, ZHU Zhan-xing. Spatial-temporal fusion graph neural networks for traffic flow forecasting[C]//AAAI. Proceedings of the 35th AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2021: 4189-4196.
|
[72] |
LYU Ming-qi, HONG Zhao-xiong, CHEN Ling, et al. Temporal multi-graph convolutional network for traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6): 3337-3348. doi: 10.1109/TITS.2020.2983763
|
[73] |
ZHANG Yang, CHENG Tao, REN Yi-bin, et al. A novel residual graph convolution deep learning model for short-term network-based traffic forecasting[J]. International Journal of Geographical Information Science, 2020, 34(5): 969-995. doi: 10.1080/13658816.2019.1697879
|
[74] |
MALLICK T, BALAPRAKASH P, RASK E, et al. Graph-partitioning-based diffusion convolutional recurrent neural network for large-scale traffic forecasting[J]. Transportation Research Record, 2020, 2674(9): 473-488. doi: 10.1177/0361198120930010
|
[75] |
LI Zhi-shuai, XIONG Gang, TIAN Yong-lin, et al. A multi-stream feature fusion approach for traffic prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(2): 1456-1466. doi: 10.1109/TITS.2020.3026836
|
[76] |
LIU Jie-lun, ONG P, CHEN Xi-qun. Graph SAGE-based traffic speed forecasting for segment network with sparse data[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(3): 1755-1766. doi: 10.1109/TITS.2020.3026025
|
[77] |
OH S D, KIM Y J, HONG Ji-sun. Urban traffic flow prediction system using a multifactor pattern recognition model[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5): 2744-2755. doi: 10.1109/TITS.2015.2419614
|
[78] |
ZHENG Chuan-pan, FAN Xiao-liang, WEN Cheng-lu, et al. DeepSTD: mining spatio-temporal disturbances of multiple context factors for citywide traffic flow prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3744-3755. doi: 10.1109/TITS.2019.2932785
|
[79] |
HE Kai-ming, ZHANG Xiang-yu, REN Shao-qing, et al. Identity mappings in deep residual networks[C]//Springer. Proceedings of the 14th European Conference on Computer Vision (ECCV). Berlin: Springer, 2016: 630-645.
|
[80] |
LIAO Bin-bing, ZHANG Jing-qing, WU Chao, et al. Deep sequence learning with auxiliary information for traffic prediction[C]//ACM. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018: 537-546.
|
[81] |
ZHANG Jun-bo, ZHENG Yu, QI De-kang, et al. Predicting citywide crowd flows using deep spatio-temporal residual networks[J]. Artificial Intelligence, 2018, 259: 147-166. doi: 10.1016/j.artint.2018.03.002
|
[82] |
WANG Ping, ZHANG Ya-jie, WANG Sai-sai, et al. Forecasting travel speed in the rainfall days to develop suitable variable speed limits control strategy for less driving risk[J]. Journal of Advanced Transportation, 2021, 2021: 1-13.
|
[83] |
ZHANG Jun-bo, ZHENG Yu, QI De-kang. Deep spatio-temporal residual networks for citywide crowd flows prediction[C]// AAAI. Proceedings of the 31st AAAI Conference on Artificial Intelligence. Palo Alto: AAAI, 2017: 1655-1661.
|
[84] |
WANG Ping, XU Wan-rong, JIN Yin-li, et al. Forecasting traffic volume at a designated cross-section location on a freeway from large-regional toll collection data[J]. IEEE Access, 2019, 7: 9057-9070. doi: 10.1109/ACCESS.2018.2890725
|
[85] |
WANG Ping, HAO Wen-bang, JIN Yin-li, et al. Fine-grained traffic flow prediction of various vehicle types via fusion of multisource data and deep learning approaches[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(11): 6921-6930. doi: 10.1109/TITS.2020.2997412
|
[86] |
赵海龙, 张干, 吕安涛, 等. 基于EMD-Wavelet模型的实时交通流噪声数据清洗方法[J]. 交通科技, 2013(2): 150-153. https://www.cnki.com.cn/Article/CJFDTOTAL-SKQB201302051.htm
ZHAO Hai-long, ZHANG Gan, LYU An-tao, et al. Research on noise reduction of real-time traffic data based on emd-wavelet model[J]. Transportation Science and Technology, 2013(2): 150-153. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SKQB201302051.htm
|
[87] |
QU Li, ZHANG Yi, HU Jian-ming, et al. A BPCA based missing value imputing method for traffic flow volume data[C]// IEEE. Proceedings of IEEE Intelligent Vehicles Symposium. New York: IEEE, 2008: 985-990.
|
[88] |
QU Li, LI li, ZHANG Yi, et al. PPCA-based missing data imputation for traffic flow volume: a systematical approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2009, 10(3): 512-522. doi: 10.1109/TITS.2009.2026312
|
[89] |
侯思安, 张峰, 李向阳. 基于贝叶斯概率矩阵分解的地震数据重建算法[J]. 石油科学通报, 2018, 3(2): 154-166. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201802004.htm
HOU Si-an, ZHANG Feng, LI Xiang-yang. Seismic data reconstruction via a Bayesian probabilistic matrix factorization algorithm[J]. Petroleum Science Bulletin, 2018, 3(2): 154-166. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYKE201802004.htm
|
[90] |
TAN Hua-chun, FENG Guang-dong, FENG Jian-shuai, et al. A tensor-based method for missing traffic data completion[J]. Transportation Research Part C: Emerging Technologies, 2013, 28: 15-27. doi: 10.1016/j.trc.2012.12.007
|
[91] |
ACAR E, DUNLAVY D M, KOLDA T G, et al. Scalable tensor factorizations for incomplete data[J]. Chemometrics and Intelligent Laboratory Systems, 2011, 106(1): 41-56. doi: 10.1016/j.chemolab.2010.08.004
|
[92] |
CHEN Yi-lei, HSU C T, LIAO H Y M. Simultaneous tensor decomposition and completion using factor priors[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(3): 577-591. doi: 10.1109/TPAMI.2013.164
|
[93] |
LIU Ji, MUSIALSKI P, WONKA P, et al. Tensor completion for estimating missing values in visual data[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(1): 208-220. doi: 10.1109/TPAMI.2012.39
|
[94] |
SU Ya-ru, WU Xiao-hui, LIU Wen-xi. Low-rank tensor completion by sum of tensor nuclear norm minimization[J]. IEEE Access, 2019, 7: 134943-134953. doi: 10.1109/ACCESS.2019.2940664
|
[95] |
徐程, 曲昭伟, 陶鹏飞, 等. 动态交通数据异常值的实时筛选与恢复方法[J]. 哈尔滨工程大学学报, 2016, 37(2): 211-217. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201602012.htm
XU Cheng, QU Zhao-wei, TAO Peng-fei, et al. Methods of real-time screening and reconstruction for dynamic traffic abnormal data[J]. Journal of Harbin Engineering University, 2016, 37(2): 211-217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBG201602012.htm
|
[96] |
裴莉莉, 孙朝云, 韩雨希, 等. 基于SSC与XGBoost的高速公路异常收费数据修复算法[J]. 吉林大学学报(工学版), 2022, 52(10): 2325-2332. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202210013.htm
PEI Li-li, SUN Zhao-yun, HAN Yu-xi, et al. Algorithm for repairing abnormal toll data of expressway based on SSC and XGBoost[J]. Journal of Jilin University (Engineering and Technology Edition), 2022, 52(10): 2325-2332. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202210013.htm
|
[97] |
阮嘉琨, 蔡延光, 乐冰. 基于DBSCAN密度聚类算法的高速公路交通流异常数据检测[J]. 工业控制计算机, 2019, 32(7): 92-94. https://www.cnki.com.cn/Article/CJFDTOTAL-GYKJ201907039.htm
RUAN Jia-kun, CAI Yan-guang, LE Bing. Highway traffic flow anomaly data detection based on DBSCAN density clustering algorithm[J]. Industrial Control Computer, 2019, 32(7): 92-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYKJ201907039.htm
|
[98] |
周博, 贾树林, 胡江宇, 等. 基于机器学习的交通流参数异常数据处理模型研究[J]. 武汉纺织大学学报, 2021, 34(2): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-WFGB202102003.htm
ZHOU Bo, JIA Shu-lin, HU Jiang-yu, et al. Research on data processing model of traffic flow parameter anomaly based on machine learning[J]. Journal of Wuhan Textile University, 2021, 34(2): 9-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WFGB202102003.htm
|
[99] |
秦一菲, 马明辉, 王岩松, 等. 基于改进KNN方法的交通流异常数据修复算法[J]. 计算机测量与控制, 2018, 26(12): 180-184. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201812041.htm
QIN Yi-fei, MA Ming-hui, WANG Yan-song, et al. A recovery method for abnormal traffic flow data based on improved knn algorithm[J]. Computer Measurement and Control, 2018, 26(12): 180-184. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201812041.htm
|
[100] |
秦胜君, 李婷. 一种基于长短记忆模型的交通轨迹异常挖掘模型[J]. 广西科技大学学报, 2021, 32(2): 58-64. https://www.cnki.com.cn/Article/CJFDTOTAL-GXGX202102010.htm
QIN Sheng-jun, LI Ting. An anomaly detection algorithm for traffic trajectory data based on long short term memory model[J]. Journal of Guangxi University of Science and Technology, 2021, 32(2): 58-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXGX202102010.htm
|
[101] |
ZHU Li, YU F R, WANG Yi-ge, et al. Big data analytics in intelligent transportation systems: a survey[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(1): 383-398.
|
[102] |
BUI K H N, CHO J, YI H. Spatial-temporal graph neural network for traffic forecasting: an overview and open research issues[J]. Applied Intelligence, 2022, 52(3): 2763-2774.
|
[103] |
CAO Zhi-guang, JIANG Si-wei, ZHANG Jie, et al. A unified framework for vehicle rerouting and traffic light control to reduce traffic congestion[J]. IEEE Transactions on Intelligent Transportation Systems, 2017, 18(7): 1958-1973.
|
[104] |
QI Liang, ZHOU Meng-chu, LUAN Wen-jing. A two-level traffic light control strategy for preventing incident-based urban traffic congestion[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 19(1): 13-24.
|
[105] |
LI Hui, WANG Peng, SHEN Chun-hua. Toward end-to-end car license plate detection and recognition with deep neural networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(3): 1126-1136.
|
[106] |
YUAN Wu-bei, WANG Ping, YANG Jing-wen, et al. An alternative reliability method to evaluate the regional traffic congestion from GPS data obtained from floating cars[J]. IET Smart Cities, 2021, 3(2): 79-90.
|
[107] |
JIN Yin-li, JIA Zhen, WANG Ping, et al. Quantitative assessment on truck-related road risk for the safety control via truck flow estimation of various types[J]. IEEE Access, 2019, 7: 88799-88810.
|
[108] |
JIN Yin-li, GAO Yi-wen, WANG Ping, et al. Improved manpower planning based on traffic flow forecast using a historical queuing model[J]. IEEE Access, 2019, 7: 125101-125112.
|