Volume 23 Issue 3
Jun.  2023
Turn off MathJax
Article Contents
DING Jian-ming, ZHOU Jing-yao, JIANG Hai-fan. In-vehicle image technology for identifying faults of pantograph[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 173-187. doi: 10.19818/j.cnki.1671-1637.2023.03.013
Citation: DING Jian-ming, ZHOU Jing-yao, JIANG Hai-fan. In-vehicle image technology for identifying faults of pantograph[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 173-187. doi: 10.19818/j.cnki.1671-1637.2023.03.013

In-vehicle image technology for identifying faults of pantograph

doi: 10.19818/j.cnki.1671-1637.2023.03.013
Funds:

National Key Research and Development Program of China 2020YFA0710902

More Information
  • Author Bio:

    DING Jian-ming(1981-), male, associate professor, PhD, fdingjianming@home.swjtu.edu.cn

  • Received Date: 2022-12-22
    Available Online: 2023-07-07
  • Publish Date: 2023-06-25
  • In view of the problem that the operation safety of the train was affected by pantograph faults, an in-vehicle image technology for identifying pantograph faults was proposed to detect the dropping, deformation and destruction of pantograph, the abnormal wear and notch of carbon contact strip, and deformation and loss faults of pantograph horns in real time. Based on the faster region-convolutional neural network (Faster R-CNN) target detection framework, a target detection model for locating the pantograph bow images was designed, and the residual network was used to replace the original convolutional network. The candidate region recommendation network was constructed by using the feature pyramid multi-scale prediction structure, so as to accurately and quickly locate the pantograph bow and detect the status. Based on the mask region-convolutional neural network (Mask R-CNN) instance segmentation framework, a pantograph bow image segmentation model was designed, and the network structure and feature map size of the detection head were redesigned to adapt to the slender and curved features of the pantograph, so as to accurately and quickly segment the pantograph bow image. In order to identify and locate faults more quickly in the segmented binary image, a rapid template matching strategy for the faults of pantograph horn and carbon contact strip was formulated according to the pantograph structure size and the position coordinates output by the image segmentation model. On this basis, detailed fault detection algorithms and procedures were compiled. Research results show that on the corresponding dataset, the average detection accuracy and average detection time per frame of the target detection model for positioning the pantograph bow images are 0.944 and 0.029 s, respectively. The average segmentation accuracy and average detection time per frame of the pantograph bow image segmentation model are 0.967 and 0.031 s, respectively. In addition, the detection accuracy and average detection time per frame of the template matching are 0.985 and 0.005 s, respectively. The average detection accuracy and average detection time per frame of the fault detection algorithm are 0.966 and 0.051 s, respectively. Thus, the proposed detection algorithm has high reliability and real-time performance.

     

  • loading
  • [1]
    鲁小兵, 刘志刚, 宋洋, 等. 受电弓主动控制综述[J]. 交通运输工程学报, 2014, 14(2): 49-61. http://transport.chd.edu.cn/article/id/201402008

    LU Xiao-bing, LIU Zhi-gang, SONG Yang, et al. Review of pantograph active control[J]. Journal of Traffic and Transportation Engineering, 2014, 14(2): 49-61. (in Chinese) http://transport.chd.edu.cn/article/id/201402008
    [2]
    胡艳, 董丙杰, 黄海, 等. 碳滑板/接触线摩擦磨损性能[J]. 交通运输工程学报, 2016, 16(2): 56-63. doi: 10.19818/j.cnki.1671-1637.2016.02.007

    HU Yan, DONG Bing-jie, HUANG Hai, et al. Friction and wear behavior of carbon strip/contact wire[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 56-63. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2016.02.007
    [3]
    杨卢强, 韩通新, 王志良. 高速动车组受电弓安全检测的研究[J]. 铁道运输与经济, 2017, 39(8): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-TDYS201708013.htm

    YANG Lu-qiang, HAN Tong-xin, WANG Zhi-liang. Study on safety detection of high-speed emu pantograph[J]. Railway Transport and Economy, 2017, 39(8): 66-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDYS201708013.htm
    [4]
    杨红娟, 胡艳, 陈光雄. 受电弓滑板载流磨损机理演变过程试验研究[J]. 西南交通大学学报, 2015, 50(1): 77-83. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201501013.htm

    YANG Hong-juan, HU Yan, CHEN Guang-xiong. Experimental study on evolution of wear mechanism of contact strip with electric current[J]. Journal of Southwest Jiaotong University, 2015, 50(1): 77-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201501013.htm
    [5]
    魏秀琨, 所达, 魏德华, 等. 机器视觉在轨道交通系统状态检测中的应用综述[J]. 控制与决策, 2021, 36(2): 257-282. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202102001.htm

    WEI Xiu-kun, SUO Da, WEI De-hua, et al. A survey of the application of machine vision in rail transit system inspection[J]. Control and Decision, 2021, 36(2): 257-282. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202102001.htm
    [6]
    周宁, 杨文杰, 刘久锐, 等. 基于受电弓状态感知的弓网安全监测系统研究与探讨[J]. 中国科学: 技术科学, 2021, 51(1): 23-34. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK202101002.htm

    ZHOU Ning, YANG Wen-jie, LlU Jiu-rui, et al. Investigation of a pantograph-catenary monitoring system using condition-based pantograph recognition[J]. Scientia Sinica: Technologica, 2021, 51(1): 23-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK202101002.htm
    [7]
    韩志伟, 刘志刚, 张桂南, 等. 非接触式弓网图像检测技术研究综述[J]. 铁道学报, 2013, 35(6): 40-47. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201306009.htm

    HAN Zhi-wei, LIU Zhi-gang, ZHANG Gui-nan, et al. Overview of non-contact image detection technology for pantograph-catenary monitoring[J]. Journal of the China Railway Society, 2013, 35(6): 40-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201306009.htm
    [8]
    GAO Shi-bin. Automatic detection and monitoring system of pantograph-catenary in China's high-speed railways[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3502012.
    [9]
    施莹, 林建辉, 庄哲, 等. 基于振动信号时频分解-样本熵的受电弓裂纹故障诊断[J]. 振动与冲击, 2019, 38(8): 180-187. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201908027.htm

    SHI Ying, LIN Jian-hui, ZHUANG Zhe, et al. Fault diagnosis for pantograph cracks based on time-frequency decomposition and sample entropy of vibration signals[J]. Journal of Vibration and Shock, 2019, 38(8): 180-187. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201908027.htm
    [10]
    彭威, 贺德强, 苗剑, 等. 弓网状态监测与故障诊断方法研究[J]. 广西大学学报(自然科学版), 2011, 36(5): 718-722. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201105005.htm

    PENG Wei, HE De-qiang, MIAO Jian, et al. Research on the real-time monitoring and fault diagnosis method of pantograph-catenary[J]. Journal of Guangxi University (Natural Science Edition), 2011, 36(5): 718-722. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201105005.htm
    [11]
    姚兰, 肖建. 基于模糊熵和Hough变换的受电弓滑板裂纹检测方法[J]. 铁道学报, 2014, 36(5): 58-63. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201405015.htm

    YAO Lan, XIAO Jian. Pantograph slide cracks detection method based on fuzzy entropy and Hough transform[J]. Journal of the China Railway Society, 2014, 36(5): 58-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201405015.htm
    [12]
    冯倩, 陈维荣, 王云龙, 等. 受电弓滑板磨耗测量算法的研究[J]. 铁道学报, 2010, 32(1): 109-113. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201001021.htm

    FENG Qian, CHEN Wei-rong, WANG Yun-long, et al. Research on the algorithm to measure the pantographic slipper abrasion[J]. Journal of the China Railway Society, 2010, 32(1): 109-113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201001021.htm
    [13]
    陈维荣, 冯倩, 张健, 等. 受电弓滑板状态监测的图像目标提取[J]. 西南交通大学学报, 2010, 45(1): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201001011.htm

    CHEN Wei-rong, FENG Qian, ZHANG Jian, et al. Image object detection in monitoring of pantograph slippers[J]. Journal of Southwest Jiaotong University, 2010, 45(1): 59-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201001011.htm
    [14]
    伍川辉, 任继炜, 廖家, 等. 基于多视觉传感器的受电弓滑板磨耗检测系统设计[J]. 仪表技术与传感器, 2021(11): 78-82, 87. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS202111016.htm

    WU Chuan-hui, REN Ji-wei, LIAO Jia, et al. Design of wear detection system of pantograph slide plate based on multi-vision sensor[J]. Instrument Technique and Sensor, 2021(11): 78-82, 87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS202111016.htm
    [15]
    吕文阁, 刘少册, 郑云龙, 等. 基于线结构激光的侧轨受电弓磨耗视觉测量系统开发[J]. 机车电传动, 2017(2): 114-117. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201702038.htm

    LYU Wen-ge. LIU Shao-ce. ZHENG Yun-long, et al. Development of vision measurement system of side rail pantograph slide wear based on line structure laser[J]. Electric Drive for Locomotives, 2017(2): 114-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201702038.htm
    [16]
    陈双. 基于图像处理的受电弓故障检测算法研究[D]. 南京: 南京理工大学, 2017.

    CHEN Shuang. Research on pantograph fault detection algorithm based on image processing[D]. Nanjing: Nanjing University of Science and Technology, 2017. (in Chinese)
    [17]
    胡雪冰. 基于图像处理的受电弓故障在线检测系统研究[D]. 南京: 南京理工大学, 2019.

    HU Xue-bing. Research on pantograph fault online detection system based on image processing[D]. Nanjing: Nanjing University of Science and Technology, 2019. (in Chinese)
    [18]
    WEI Xiu-kun, JIANG Si-yang, LI Yan, et al. Defect detection of pantograph slide based on deep learning and image processing technology[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 947-958.
    [19]
    SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//ICLR. The 3rd International Conference on Learning Representations. San Diego: ICLR, 2015: 1-14.
    [20]
    KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2012, 60(6): 1097-1105.
    [21]
    冯勇, 宋天源, 钱学明. 基于深度学习的高铁受电装置安全状态快速检测方法[J]. 西安交通大学学报, 2019, 53(10): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201910015.htm

    FENG Yong, SONG Tian-yuan, QIAN Xue-ming. A fast detection method for safety states of power receiving device on high-speed rail based on deep learning[J]. Journal of Xi'an Jiaotong University, 2019, 53(10): 109-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201910015.htm
    [22]
    REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 779-788.
    [23]
    REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 6517-6525.
    [24]
    寇皓为, 苏燕辰, 李恒奎, 等. 深度学习在受电弓弓头故障检测与分类中的应用[J]. 激光杂志, 2022, 43(6): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202206010.htm

    KOU Hao-wei, SU Yan-chen, LI Heng-kui, et al. Application of deep learning in the detection and classification of pantograph head fault[J]. Laser Journal, 2022, 43(6): 53-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202206010.htm
    [25]
    BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[C]//IEEE. 2020 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2020: 580-597.
    [26]
    REN Shao-qing, HE Kai-ming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
    [27]
    HE Kai-ming, ZHANG Xiang-yu, REN Shao-qing, et al. Deep residual learning for image recognition[C]//IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 770-778.
    [28]
    LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 936-944.
    [29]
    SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.
    [30]
    HE Kai-ming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//IEEE. 2017 IEEE International Conference on Computer Vision. New York: IEEE, 2017: 2980-2988.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (492) PDF downloads(101) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return