Citation: | DING Jian-ming, ZHOU Jing-yao, JIANG Hai-fan. In-vehicle image technology for identifying faults of pantograph[J]. Journal of Traffic and Transportation Engineering, 2023, 23(3): 173-187. doi: 10.19818/j.cnki.1671-1637.2023.03.013 |
[1] |
鲁小兵, 刘志刚, 宋洋, 等. 受电弓主动控制综述[J]. 交通运输工程学报, 2014, 14(2): 49-61. http://transport.chd.edu.cn/article/id/201402008
LU Xiao-bing, LIU Zhi-gang, SONG Yang, et al. Review of pantograph active control[J]. Journal of Traffic and Transportation Engineering, 2014, 14(2): 49-61. (in Chinese) http://transport.chd.edu.cn/article/id/201402008
|
[2] |
胡艳, 董丙杰, 黄海, 等. 碳滑板/接触线摩擦磨损性能[J]. 交通运输工程学报, 2016, 16(2): 56-63. doi: 10.19818/j.cnki.1671-1637.2016.02.007
HU Yan, DONG Bing-jie, HUANG Hai, et al. Friction and wear behavior of carbon strip/contact wire[J]. Journal of Traffic and Transportation Engineering, 2016, 16(2): 56-63. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2016.02.007
|
[3] |
杨卢强, 韩通新, 王志良. 高速动车组受电弓安全检测的研究[J]. 铁道运输与经济, 2017, 39(8): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-TDYS201708013.htm
YANG Lu-qiang, HAN Tong-xin, WANG Zhi-liang. Study on safety detection of high-speed emu pantograph[J]. Railway Transport and Economy, 2017, 39(8): 66-71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDYS201708013.htm
|
[4] |
杨红娟, 胡艳, 陈光雄. 受电弓滑板载流磨损机理演变过程试验研究[J]. 西南交通大学学报, 2015, 50(1): 77-83. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201501013.htm
YANG Hong-juan, HU Yan, CHEN Guang-xiong. Experimental study on evolution of wear mechanism of contact strip with electric current[J]. Journal of Southwest Jiaotong University, 2015, 50(1): 77-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201501013.htm
|
[5] |
魏秀琨, 所达, 魏德华, 等. 机器视觉在轨道交通系统状态检测中的应用综述[J]. 控制与决策, 2021, 36(2): 257-282. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202102001.htm
WEI Xiu-kun, SUO Da, WEI De-hua, et al. A survey of the application of machine vision in rail transit system inspection[J]. Control and Decision, 2021, 36(2): 257-282. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202102001.htm
|
[6] |
周宁, 杨文杰, 刘久锐, 等. 基于受电弓状态感知的弓网安全监测系统研究与探讨[J]. 中国科学: 技术科学, 2021, 51(1): 23-34. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK202101002.htm
ZHOU Ning, YANG Wen-jie, LlU Jiu-rui, et al. Investigation of a pantograph-catenary monitoring system using condition-based pantograph recognition[J]. Scientia Sinica: Technologica, 2021, 51(1): 23-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK202101002.htm
|
[7] |
韩志伟, 刘志刚, 张桂南, 等. 非接触式弓网图像检测技术研究综述[J]. 铁道学报, 2013, 35(6): 40-47. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201306009.htm
HAN Zhi-wei, LIU Zhi-gang, ZHANG Gui-nan, et al. Overview of non-contact image detection technology for pantograph-catenary monitoring[J]. Journal of the China Railway Society, 2013, 35(6): 40-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201306009.htm
|
[8] |
GAO Shi-bin. Automatic detection and monitoring system of pantograph-catenary in China's high-speed railways[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 3502012.
|
[9] |
施莹, 林建辉, 庄哲, 等. 基于振动信号时频分解-样本熵的受电弓裂纹故障诊断[J]. 振动与冲击, 2019, 38(8): 180-187. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201908027.htm
SHI Ying, LIN Jian-hui, ZHUANG Zhe, et al. Fault diagnosis for pantograph cracks based on time-frequency decomposition and sample entropy of vibration signals[J]. Journal of Vibration and Shock, 2019, 38(8): 180-187. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201908027.htm
|
[10] |
彭威, 贺德强, 苗剑, 等. 弓网状态监测与故障诊断方法研究[J]. 广西大学学报(自然科学版), 2011, 36(5): 718-722. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201105005.htm
PENG Wei, HE De-qiang, MIAO Jian, et al. Research on the real-time monitoring and fault diagnosis method of pantograph-catenary[J]. Journal of Guangxi University (Natural Science Edition), 2011, 36(5): 718-722. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201105005.htm
|
[11] |
姚兰, 肖建. 基于模糊熵和Hough变换的受电弓滑板裂纹检测方法[J]. 铁道学报, 2014, 36(5): 58-63. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201405015.htm
YAO Lan, XIAO Jian. Pantograph slide cracks detection method based on fuzzy entropy and Hough transform[J]. Journal of the China Railway Society, 2014, 36(5): 58-63. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201405015.htm
|
[12] |
冯倩, 陈维荣, 王云龙, 等. 受电弓滑板磨耗测量算法的研究[J]. 铁道学报, 2010, 32(1): 109-113. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201001021.htm
FENG Qian, CHEN Wei-rong, WANG Yun-long, et al. Research on the algorithm to measure the pantographic slipper abrasion[J]. Journal of the China Railway Society, 2010, 32(1): 109-113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201001021.htm
|
[13] |
陈维荣, 冯倩, 张健, 等. 受电弓滑板状态监测的图像目标提取[J]. 西南交通大学学报, 2010, 45(1): 59-64. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201001011.htm
CHEN Wei-rong, FENG Qian, ZHANG Jian, et al. Image object detection in monitoring of pantograph slippers[J]. Journal of Southwest Jiaotong University, 2010, 45(1): 59-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201001011.htm
|
[14] |
伍川辉, 任继炜, 廖家, 等. 基于多视觉传感器的受电弓滑板磨耗检测系统设计[J]. 仪表技术与传感器, 2021(11): 78-82, 87. https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS202111016.htm
WU Chuan-hui, REN Ji-wei, LIAO Jia, et al. Design of wear detection system of pantograph slide plate based on multi-vision sensor[J]. Instrument Technique and Sensor, 2021(11): 78-82, 87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YBJS202111016.htm
|
[15] |
吕文阁, 刘少册, 郑云龙, 等. 基于线结构激光的侧轨受电弓磨耗视觉测量系统开发[J]. 机车电传动, 2017(2): 114-117. https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201702038.htm
LYU Wen-ge. LIU Shao-ce. ZHENG Yun-long, et al. Development of vision measurement system of side rail pantograph slide wear based on line structure laser[J]. Electric Drive for Locomotives, 2017(2): 114-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCDC201702038.htm
|
[16] |
陈双. 基于图像处理的受电弓故障检测算法研究[D]. 南京: 南京理工大学, 2017.
CHEN Shuang. Research on pantograph fault detection algorithm based on image processing[D]. Nanjing: Nanjing University of Science and Technology, 2017. (in Chinese)
|
[17] |
胡雪冰. 基于图像处理的受电弓故障在线检测系统研究[D]. 南京: 南京理工大学, 2019.
HU Xue-bing. Research on pantograph fault online detection system based on image processing[D]. Nanjing: Nanjing University of Science and Technology, 2019. (in Chinese)
|
[18] |
WEI Xiu-kun, JIANG Si-yang, LI Yan, et al. Defect detection of pantograph slide based on deep learning and image processing technology[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(3): 947-958.
|
[19] |
SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//ICLR. The 3rd International Conference on Learning Representations. San Diego: ICLR, 2015: 1-14.
|
[20] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2012, 60(6): 1097-1105.
|
[21] |
冯勇, 宋天源, 钱学明. 基于深度学习的高铁受电装置安全状态快速检测方法[J]. 西安交通大学学报, 2019, 53(10): 109-114. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201910015.htm
FENG Yong, SONG Tian-yuan, QIAN Xue-ming. A fast detection method for safety states of power receiving device on high-speed rail based on deep learning[J]. Journal of Xi'an Jiaotong University, 2019, 53(10): 109-114. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201910015.htm
|
[22] |
REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 779-788.
|
[23] |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 6517-6525.
|
[24] |
寇皓为, 苏燕辰, 李恒奎, 等. 深度学习在受电弓弓头故障检测与分类中的应用[J]. 激光杂志, 2022, 43(6): 53-58. https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202206010.htm
KOU Hao-wei, SU Yan-chen, LI Heng-kui, et al. Application of deep learning in the detection and classification of pantograph head fault[J]. Laser Journal, 2022, 43(6): 53-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JGZZ202206010.htm
|
[25] |
BOCHKOVSKIY A, WANG C Y, LIAO H Y M. YOLOv4: optimal speed and accuracy of object detection[C]//IEEE. 2020 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2020: 580-597.
|
[26] |
REN Shao-qing, HE Kai-ming, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
|
[27] |
HE Kai-ming, ZHANG Xiang-yu, REN Shao-qing, et al. Deep residual learning for image recognition[C]//IEEE. 2016 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 770-778.
|
[28] |
LIN T Y, DOLLAR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//IEEE. 2017 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 936-944.
|
[29] |
SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(4): 640-651.
|
[30] |
HE Kai-ming, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//IEEE. 2017 IEEE International Conference on Computer Vision. New York: IEEE, 2017: 2980-2988.
|