Volume 23 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
SHI Yu-ling, CHANG Zhou, AN Ning, YAN Chang-gen, LAN Heng-xing, YANG Wang-li. Long-term stability analysis of loess cutting shallow slope based on wet-dry cycle test[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 104-115. doi: 10.19818/j.cnki.1671-1637.2023.04.007
Citation: SHI Yu-ling, CHANG Zhou, AN Ning, YAN Chang-gen, LAN Heng-xing, YANG Wang-li. Long-term stability analysis of loess cutting shallow slope based on wet-dry cycle test[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 104-115. doi: 10.19818/j.cnki.1671-1637.2023.04.007

Long-term stability analysis of loess cutting shallow slope based on wet-dry cycle test

doi: 10.19818/j.cnki.1671-1637.2023.04.007
Funds:

National Natural Science Foundation of China 42077265

National Natural Science Foundation of China 41927806

Science and Technology Project of Gansu Provincial Department of Transportation 2021-19

More Information
  • Author Bio:

    Shi Yu-ling(1972-), female, associate professor, PhD, dcdgx15@chd.edu.cn

  • Received Date: 2023-03-12
    Available Online: 2023-09-08
  • Publish Date: 2023-08-25
  • To evaluate the shallow soil strength deterioration effect of loess slope under wet-dry cycle, the laboratory direct shear tests were carried out under different wet-dry cycle paths on Q3 undisturbed loess from Dingxi, Gansu Province. The effects of cycling times, cycling amplitude and lower bound water content on the shear strength of the soil were analyzed. A strength degradation model considering three parameters of wet-dry cycle was established, and the long-term stabilities of loess cutting shallow slope under different wet-dry cycle paths were compared by the strength reduction method. Test results show that the cohesion of undisturbed loess first decreases and then tends to be stable with the increase of wet-dry cycles, which can be fitted by the hyperbolic function. The internal friction angle decreases linearly. After 10 cycles, the maximum deterioration degrees of cohesion and internal friction angle are 27.64% and 9.88%, respectively. Under the same wet-dry cycles, the degradation effects of the cycling amplitude on the cohesion and internal friction angle of undisturbed loess are greater than that of the lower bound water content. The long-term stability coefficient of loess cutting shallow slope follows an exponentially decreasing function during the wet-dry cycle. The maximum reduction of slope stability coefficient under different wet-dry cycle paths is 61.5%, and the reduction of stability coefficient accounts for 85% of the total reduction after 6 cycles. The stability of loess cutting shallow slope is affected by the cycling amplitude and lower bound water content in the wet-dry cycle, which shows that the slope stability increases first and then tends to be stable with the increase of lower bound water content. However, with the increase of cycling amplitude, the stability coefficient decreases linearly. In engineering practice, the water content varies with the depth in the slope, and the wet-dry cycle paths are different, so the layering effect of wet-dry cycle should be considered in long-term stability analysis of loess cutting slope.

     

  • loading
  • [1]
    高国瑞, 韩爱民. 论中国区域性土的分布和岩土性质的形成[J]. 岩土工程学报, 2005, 27(5): 511-515. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200505005.htm

    GAO Guo-rui, HAN Ai-min. Distribution of regional soils in China and formation of their special geotechnical properties[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(5): 511-515. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200505005.htm
    [2]
    徐张建, 林在贯, 张茂省. 中国黄土与黄土滑坡[J]. 岩石力学与工程学报, 2007, 26(7): 1297-1312. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200707001.htm

    XU Zhang-jian, LIN Zai-guan, ZHANG Mao-sheng. Loess in China and loess landslides[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(7): 1297-1312. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200707001.htm
    [3]
    LAN Heng-xing, PENG Jian-bing, ZHU Yan-bo, et al. Research on geological and surfacial processes and major disaster effects in the Yellow River Basin[J]. Science China Earth Sciences, 2022, 65(2): 234-256. doi: 10.1007/s11430-021-9830-8
    [4]
    LIU Yang, HAN Dong-dong, LIU Ni-na, et al. Reinforcement mechanism analysis of lattice beam and prestressed anchor rod system for loess slope[J]. Frontiers in Earth Science, 2023(11): 1121172.
    [5]
    周峙, 张家铭, 宁伏龙, 等. 降雨入渗下裂土边坡水分运移时空特征与失稳机理[J]. 交通运输工程学报, 2020, 20(4): 107-119. doi: 10.19818/j.cnki.1671-1637.2020.04.008

    ZHOU Zhi, ZHANG Jia-ming, NING Fu-long, et al. Temporal and spatial characteristics of moisture migration and instability mechanism of cracked soil slope under rainfall infiltration[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 107-119. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.04.008
    [6]
    杨和平, 王兴正, 肖杰. 干湿循环效应对南宁外环膨胀土抗剪强度的影响[J]. 岩土工程学报, 2014, 36(5): 949-954. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405027.htm

    YANG He-ping, WANG Xing-zheng, XIAO Jie. Influence of wetting-drying cycles on strength characteristics of Nanning expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 949-954. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201405027.htm
    [7]
    JING Jing, HOU Jing-ming, SUN Wen, et al. Study on influencing factors of unsaturated loess slope stability under dry-wet cycle conditions[J]. Journal of Hydrology, 2022, 612: 128187. doi: 10.1016/j.jhydrol.2022.128187
    [8]
    陈正汉, 方祥位, 朱元青, 等. 膨胀土和黄土的细观结构及其演化规律研究[J]. 岩土力学, 2009, 30(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200901003.htm

    CHEN Zheng-han, FANG Xiang-wei, ZHU Yuan-qing, et al. Research on meso-structures and their evolution laws of expansive soil and loess[J]. Rock and Soil Mechanics, 2009, 30(1): 1-11. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200901003.htm
    [9]
    NI Wan-kui, YUAN Kang-ze, LYU Xiang-fei, et al. Comparison and quantitative analysis of microstructure parameters between original loess and remoulded loess under different wetting-drying cycles[J]. Scientific Reports, 2020, 10: 5547. doi: 10.1038/s41598-020-62571-1
    [10]
    LU Hai-jun, LI Ji-xiang, WANG Wei-wei, et al. Cracking and water seepage of Xiashu loess used as landfill cover under wetting-drying cycles[J]. Environmental Earth Sciences, 2015, 74(11): 7441-7450. doi: 10.1007/s12665-015-4729-4
    [11]
    YE Wan-jun, BAI Yang, CUI Chen-yang, et al. Deterioration of the internal structure of loess under dry-wet cycles[J]. Advances in Civil Engineering, 2020, 2020: 1-17.
    [12]
    叶万军, 李长清, 杨更社, 等. 增湿-减湿作用下黄土裂隙演化规律研究[J]. 工程地质学报, 2017, 25(2): 376-383. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201702015.htm

    YE Wan-jun, LI Chang-qing, YANG Geng-she, et al. Evolution of loess crack under action of dehumidification-humidification[J]. Journal of Engineering Geology, 2017, 25(2): 376-383. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201702015.htm
    [13]
    刘宏泰, 张爱军, 段涛, 等. 干湿循环对重塑黄土强度和渗透性的影响[J]. 水利水运工程学报, 2010(4): 38-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201004007.htm

    LIU Hong-tai, ZHANG Ai-jun, DUAN Tao, et al. The influence of alternate dry-wet on the strength and permeability of remolded loess[J]. Hydro-Science and Engineering, 2010(4): 38-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLSY201004007.htm
    [14]
    HAO Rui-hua, ZHANG Zi-zhao, GUO Ze-zhou, et al. Investigation of changes to triaxial shear strength parameters and microstructure of Yili loess with drying-wetting cycles[J]. Materials, 2021, 15(1): 255. doi: 10.3390/ma15010255
    [15]
    袁志辉, 倪万魁, 唐春, 等. 干湿循环下黄土强度衰减与结构强度试验研究[J]. 岩土力学, 2017, 38(7): 1894-1902, 1942. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707007.htm

    YUAN Zhi-hui, NI Wan-kui, TANG Chun, et al. Experimental study of structure strength and strength attenuation of loess under wetting-drying cycle[J]. Rock and Soil Mechanics, 2017, 38(7): 1894-1902, 1942. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201707007.htm
    [16]
    袁志辉, 倪万魁, 唐春, 等. 干湿循环效应下黄土抗拉强度试验研究[J]. 岩石力学与工程学报, 2017, 36(增1): 3670-3677. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1062.htm

    YUAN Zhi-hui, NI Wan-kui, TANG Chun, et al. Experimental studies of tensile strength of loess in drying-wetting cycle[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S1): 3670-3677. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1062.htm
    [17]
    YUAN Kang-ze, NI Wan-kui, LYU Xiang-fei. Collapse behavior and microstructural change of loess under different wetting-drying cycles[J]. IOP Conference Series Earth and Environmental Science, 2020, 598: 012036.
    [18]
    叶万军, 赵志鹏, 杨更社, 等. 土体含水状态对黄土边坡剥落病害产生的影响[J]. 中国公路学报, 2015, 28(7): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201507003.htm

    YE Wan-jun, ZHAO Zhi-peng, YANG Geng-she, et al. Influence of soil moisture state on loess slope spalling hazards[J]. China Journal of Highway and Transport, 2015, 28(7): 18-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201507003.htm
    [19]
    曾召田, 吕海波, 赵艳林, 等. 膨胀土干湿循环效应及其对边坡稳定性的影响[J]. 工程地质学报, 2012, 20(6): 934-939. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201206006.htm

    ZENG Zhao-tian, LYU Hai-bo, ZHAO Yan-lin, et al. Wetting-drying effect of expansive soils and its influence on slope stability[J]. Journal of Engineering Geology, 2012, 20(6): 934-939. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201206006.htm
    [20]
    LIAN Bao-qin, WANG Xin-gang, ZHAN Hong-bin, et al. Creep mechanical and microstructural insights into the failure mechanism of loess landslides induced by dry-wet cycles in the Heifangtai platform, China[J]. Engineering Geology, 2022, 300: 106589.
    [21]
    LI Guo-yu, WANG Fei, MA Wei, et al. Variations in strength and deformation of compacted loess exposed to wetting-drying and freeze-thaw cycles[J]. Cold Regions Science and Technology, 2018, 151: 159-167.
    [22]
    杜京房, 仝飞. 干湿循环与降雨对黄土边坡稳定性的影响研究[J]. 广西大学学报(自然科学版), 2020, 45(4): 783-791. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ202004008.htm

    DU Jing-fang, TONG Fei. Study on the influence of wet-dry cycle and rainfall on loess slope stability[J]. Journal of Guangxi University (Natural Science Edition), 2020, 45(4): 783-791. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ202004008.htm
    [23]
    MU Q Y, DONG H, LIAO H J, et al. Water-retention curves of loess under wetting-drying cycles[J]. Géotechnique Letters, 2020, 10(2): 135-140.
    [24]
    赵天宇, 王锦芳. 考虑密度与干湿循环影响的黄土土水特征曲线[J]. 中南大学学报(自然科学版), 2012, 43(6): 2445-2453. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201206062.htm

    ZHAO Tian-yu, WANG Jin-fang. Soil-water characteristic curve for unsaturated loess soil considering density and wetting-drying cycle effects[J]. Journal of Central South University(Science and Technology), 2012, 43(6): 2445-2453. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201206062.htm
    [25]
    刘奉银, 张昭, 周冬, 等. 密度和干湿循环对黄土土-水特征曲线的影响[J]. 岩土力学, 2011, 32(增2): 132-136, 142. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2021.htm

    LIU Feng-yin, ZHANG Zhao, ZHOU Dong, et al. Effects of initial density and drying-wetting cycle on soil water characteristic curve of unsaturated loess[J]. Rock and Soil Mechanics, 2011, 32(S2): 132-136, 142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2021.htm
    [26]
    郝延周, 王铁行, 汪朝, 等. 干湿循环作用下压实黄土三轴剪切特性试验研究[J]. 水利学报, 2021, 52(3): 359-368. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202103012.htm

    HAO Yan-zhou, WANG Tie-hang, WANG Zhao, et al. Experimental study on triaxial shear characteristics of compacted loess under drying and wetting cycles[J]. Journal of Hydraulic Engineering, 2021, 52(3): 359-368. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202103012.htm
    [27]
    王铁行, 郝延周, 汪朝, 等. 干湿循环作用下压实黄土动强度性质试验研究[J]. 岩石力学与工程学报, 2020, 39(6): 1242-1251. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006014.htm

    WANG Tie-hang, HAO Yan-zhou, WANG Zhao, et al. Experimental study on dynamic strength properties of compacted loess under wetting-drying cycles[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(6): 1242-1251. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202006014.htm
    [28]
    HU Chang-ming, YUAN Yi-li, MEI Yuan, et al. Comprehensive strength deterioration model of compacted loess exposed to drying-wetting cycles[J]. Bulletin of Engineering Geology and the Environment, 2020, 79(1): 383-398.
    [29]
    党进谦, 郝月清. 含水量对黄土结构强度的影响[J]. 西北水资源与水工程, 1998(2): 15-19. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ802.002.htm

    DANG Jin-qian, HAO Yue-qing. Effect of water content on the structure strength of loess[J]. Water Resources and Water Engineering, 1998(2): 15-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ802.002.htm
    [30]
    唐朝生, 施斌, 刘春, 等. 影响黏性土表面干缩裂缝结构形态的因素及定量分析[J]. 水利学报, 2007, 38(10): 1186-1193. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200710007.htm

    TANG Chao-sheng, SHI Bin, LIU Chun, et al. Factors affecting the surface cracking in clay due to drying shrinkage[J]. Journal of Hydraulic Engineering, 2007, 38 (10): 1186-1193. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200710007.htm
    [31]
    孙巍锋. 土-岩二元结构路堑边坡失稳机理与智能预警研究[D]. 西安: 长安大学, 2020.

    SUN Wei-feng. Study of instability mechanism and intelligent pre-warning for cutting slope with soil-rock binary structure[D]. Xi'an: Chang'an University, 2020. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (496) PDF downloads(72) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return