Volume 23 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
XU Jing-min, XU Cheng-hua, SHI Ye-hui, ZHANG Ding-wen, XU Tao, XU Wen, CHENG He-lan. Responses of loose sand ground and surface structure caused by tunnel construction[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 190-204. doi: 10.19818/j.cnki.1671-1637.2023.04.014
Citation: XU Jing-min, XU Cheng-hua, SHI Ye-hui, ZHANG Ding-wen, XU Tao, XU Wen, CHENG He-lan. Responses of loose sand ground and surface structure caused by tunnel construction[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 190-204. doi: 10.19818/j.cnki.1671-1637.2023.04.014

Responses of loose sand ground and surface structure caused by tunnel construction

doi: 10.19818/j.cnki.1671-1637.2023.04.014
Funds:

National Natural Science Foundation of China 52108364

National Natural Science Foundation of China 52278398

Fundamental Research Funds for the Central Universities 2242022R10086

Open Fund Research Ptoject of Tunnel and Underground Engineering Research Center of Jiangsu Province 2021-SDJJ-03

More Information
  • Author Bio:

    XU Jing-min (1992-), male, assistant professor, PhD, jingmin_xu@seu.edu.cn

  • Received Date: 2023-02-14
    Available Online: 2023-09-08
  • Publish Date: 2023-08-25
  • Four centrifuge tests were performed to simulate the construction of tunnels with the relative depths (burial depth-diameter ratio) of 1.3 and 2.0 in the sand ground, and the migration and deformation laws of soil layers and ground buildings were analyzed. The ground volume loss caused by tunnel construction was modelled by extracting the liquid from the model tunnel, and a two-storey aluminum frame structure model was designed. The movement data of the strata and structure caused by tunnel construction were measured by particle image velocimetry (PIV), and the horizontal and vertical displacements of the surface and building raft foundation, the movement and shear deformation of the deep ground, the shear deformation and classification of the frame structure, as well as the shear deformation modification factor of the building and relative shear stiffness were analyzed. Research results show that the surface settlement trough width increases from 3.4 m to 5.6 m when tunnel relative depth increases from 1.3 to 2.0, and the maximum settlement of ground building increases from 32.3 mm to 49.5 mm, but the deformation degree decreases. The deformation of ground frame structure due to tunnel construction mainly exhibits shear deformation, and the proportion of bending deformation is negligible. The contractive deformation of loose sand soil due to tunnel construction leads to the fact that the volume loss of surface ground is always greater than the tunnel, and a deeper tunnel indicates a greater difference. A large gap (27 mm) exists between the building raft foundation and the ground in the shallow tunnel test, whereas no gap forms in the deep tunnel test, thereby increasing the constraint of the building raft foundation on the horizontal movement of the surface soil. The building shear deformation modification factor decreases gradually with the increase in tunnel volume loss, and the change rate of shallow tunnel is greater. The data of building shear deformation modification factor-relative shear stiffness for the two relative tunnel depths are within the existing empirical envelopes, indicating that the shear deformation modification factor is also applicable to the deep tunnel.

     

  • loading
  • [1]
    PECK R B. Deep excavations and tunnelling in soft ground[C]// ISSMGE. International Society for Soil Mechanics and Geotechnical Engineering. London: ISSMGE, 1969: 311-375.
    [2]
    来弘鹏, 赵鑫, 康佐. 黄土地区新建地铁隧道下穿时既有地铁线路沉降控制标准[J]. 交通运输工程学报, 2018, 18(4): 63-71. doi: 10.19818/j.cnki.1671-1637.2018.04.007

    LAI Hong-peng, ZHAO Xin, KANG Zuo. Settlement control standard of existing metro line undercrossed by new metro tunnel in loess area[J]. Journal of Traffic and Transportation Engineering, 2018, 18(4): 63-71. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2018.04.007
    [3]
    张治国, 沈安鑫, 徐晨, 等. 黏性场地列车荷载影响下衬砌半渗透边界盾构隧道诱发地表固结沉降解[J]. 中国公路学报, 2022, 35(5): 116-127. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202205011.htm

    ZHANG Zhi-guo, SHEN An-xin, XU Chen, et al. Analytical solution for surface consolidation settlements induced by shield tunneling with semi-permeable boundary conditions under train loading in viscous field[J]. China Journal of Highway and Transport, 2022, 35(5): 116-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202205011.htm
    [4]
    来弘鹏, 姚毅, 高强, 等. 浅埋隧道开挖引起地层位移的双极坐标求解法[J]. 交通运输工程学报, 2023, 23(4): 178-189. doi: 10.19818/j.cnki.1671-1637.2023.04.013

    LAI Hong-peng, YAO Yi, GAO Qiang, et al. Elastoplastic solution of ground deformation caused by shallow tunnel in bipolar coordinate system[J]. Journal of Traffic and Transportation Engineering, 2023, 23(4): 178-189. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2023.04.013
    [5]
    房倩, 杜建明, 王中举, 等. 盾构施工影响下砂土地层变形规律模型试验研究[J]. 中国公路学报, 2021, 34(5): 135-143, 214. doi: 10.3969/j.issn.1001-7372.2021.05.013

    FANG Qian, DU Jian-ming, WANG Zhong-ju, et al. Model experimental study on stratum deformation of shield tunnelling in sand[J]. China Journal of Highway and Transport, 2021, 34(5): 135-143, 214. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.05.013
    [6]
    房倩, 杜建明, 王赶, 等. 砂土隧道开挖地层变形规律及影响因素分析[J]. 隧道与地下工程灾害防治, 2020, 2(3): 67-76. https://www.cnki.com.cn/Article/CJFDTOTAL-SDZH202003009.htm

    FANG Qian, DU Jian-ming, WANG Gan, et al. Stratum deformation laws and influence factors analysis of tunnel excavation in sand[J]. Hazard Control in Tunnelling and Underground Engineering, 2020, 2(3): 67-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDZH202003009.htm
    [7]
    ZHENG G, GE L, ZHANG T, et al. Volumetric behaviour of subsurface ground due to tunnelling in completely drained granular soil[J]. Computers and Geotechnics, 2019, 116: 103217. doi: 10.1016/j.compgeo.2019.103217
    [8]
    曹利强, 张顶立, 房倩, 等. 软硬不均地层中盾构施工引起的地层隆沉预测[J]. 岩石力学与工程学报, 2019, 38(3): 634-648. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201903019.htm

    CAO Li-qiang, ZHANG Ding-li, FANG Qian, et al. Ground vertical displacements due to shield tunnelling in double-layer soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(3): 634-648. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201903019.htm
    [9]
    童建军, 桂登斌, 王力, 等. 基于上覆机场跑道安全的盾构隧道拱顶沉降控制基准研究[J]. 岩石力学与工程学报, 2021, 40(2): 382-389. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202102013.htm

    TONG Jian-jun, GUI Deng-bin, WANG Li, et al. Research on control criteria of shield tunnel crown settlement based on safety of overlying airport runway[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(2): 382-389. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202102013.htm
    [10]
    POTTS D M, ADDENBROOKE T I. A structure's influence on tunnelling-induced ground movements[J]. Proceedings of the Institution of Civil Engineers: Geotechnical Engineering, 1997, 125: 109-125. doi: 10.1680/igeng.1997.29233
    [11]
    苏洁, 张顶立, 周正宇, 等. 地铁隧道穿越既有桥梁安全风险评估及控制[J]. 岩石力学与工程学报, 2015, 34(增1): 3188-3195. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1073.htm

    SU Jie, ZHANG Ding-li, ZHOU Zheng-yu, et al. Safety risk assessment and control of existing bridge crossed by tunnel construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S1): 3188-3195. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2015S1073.htm
    [12]
    张治国, 师敏之, 张成平, 等. 类矩形盾构隧道开挖引起邻近地下管线变形研究[J]. 岩石力学与工程学报, 2019, 38(4): 852-864. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201904021.htm

    ZHANG Zhi-guo, SHI Min-zhi, ZHANG Cheng-ping, et al. Research on deformation of adjacent underground pipelines caused by excavation of quasi-rectangular shields[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(4): 852-864. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201904021.htm
    [13]
    吴锋波, 金淮, 尚彦军, 等. 城市轨道交通隧道周边建(构)筑沉降预测方法研究[J]. 岩石力学与工程学报, 2013, 32(增2): 3535-3544. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2069.htm

    WU Feng-bo, JIN Huai, SHANG Yan-jun, et al. Study of building/structure settlement prediction method surrounding urban rail transit tunnel engineering[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 3535-3544. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2069.htm
    [14]
    谭伟姿. 盾构重叠隧道极小间距侧穿居民楼施工案例[J]. 地下空间与工程学报, 2021, 17(增1): 291-298. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2021S1041.htm

    TAN Wei-zi. Case study of overlapped shield tunnels passing buildings in very close proximity[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(S1): 291-298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2021S1041.htm
    [15]
    伍毅敏, 刘延安, 王恒, 等. 北京市隧道下穿施工引起城市路面沉降的影响规律回归分析[J]. 交通运输工程学报, 2022, 22(2): 176-186. doi: 10.19818/j.cnki.1671-1637.2022.02.013

    WU Yi-min, LIU Yan-an, WANG Heng, et al. Regression analysis of influence law of urban pavement settlement caused by underpass tunnel construction in Beijing[J]. Journal of Traffic and Transportation Engineering, 2022, 22(2): 176-186. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.02.013
    [16]
    MARSHALL A M, FARRELL R, KLAR A, et al. Tunnels in sands: the effect of size, depth and volume loss on greenfield displacements[J]. Géotechnique, 2012, 62(5): 385-399.
    [17]
    MAIR R J, TAYLOR R N, BRACEGIRDLE A. Subsurface settlement profiles above tunnels in clays[J]. Géotechnique, 1993, 43(2): 315-320.
    [18]
    FRANZA A, MARSHALL A M, ZHOU B. Greenfield tunnelling in sands: the effects of soil density and relative depth[J]. Géotechnique, 2019, 69(4): 297-307.
    [19]
    马乾瑛, 业嘉超, 蒋小慧. 考虑土拱效应的盾构隧道施工地表沉降预测研究[J]. 现代隧道技术, 2021, 58(6): 148-154. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD202106017.htm

    MA Qian-ying, YE Jia-chao, JIANG Xiao-hui. Study on ground settlement prediction in shield tunnel construction considering soil arching effect[J]. Modern Tunnelling Technology, 2021, 58(6): 148-154. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD202106017.htm
    [20]
    张坤勇, 陈恕, 王耀. 盾构地表沉降的数值分析及归一化模型建立[J]. 地下空间与工程学报, 2019, 15(3): 842-849. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201903026.htm

    ZHANG Kun-yong, CHEN Shu, WANG Yao. Numerical simulation and normalized model of surface settlement induced by shield tunneling excavation[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(3): 842-849. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201903026.htm
    [21]
    代君, 贾强. 盾构隧道施工引起的临近地表建筑物沉降研究[J]. 山东建筑大学学报, 2019, 34(5): 44-49, 59. https://www.cnki.com.cn/Article/CJFDTOTAL-SDJG201905008.htm

    DAI Jun, JIA Qiang. Study on adjacent buildings ground settlement caused by shield tunneling construction[J]. Journal of Shandong Jianzhu University, 2019, 34(5): 44-49, 59. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SDJG201905008.htm
    [22]
    张治国, 李振波, 张孟喜, 等. 考虑隧道开挖与桩基相互作用的大底盘塔楼建筑变形分析[J]. 东南大学学报(自然科学版), 2021, 51(4): 603-609. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202104008.htm

    ZHANG Zhi-guo, LI Zhen-bo, ZHANG Meng-xi, et al. Analysis on deformation of tower with large chassis considering interaction between tunnel excavation and pile foundation[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(4): 603-609. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202104008.htm
    [23]
    戴旭, 赵少飞, 孙嵩, 等. 隧道穿越距离变化对地表框架结构变形的影响[J]. 防灾减灾工程学报, 2018, 38(3): 480-486, 497. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201803011.htm

    DAI Xu, ZHAO Shao-fei, SUN Song, et al. Influence on deformations of a ground frame structure by a tunnel crossing at different distances[J]. Journal of Disaster Prevention and Mitigation Engineering, 2018, 38(3): 480-486, 497. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DZXK201803011.htm
    [24]
    XU J M, FRANZA A, MARSHALL A M. Centrifuge modelling study of the effect of tunnel depth on tunnel-footing interaction[C]//NUS. Asian Conference on Physical Modelling in Geotechnics (Asiafuge-2021). Singapore: NUS, 2021: 247-256.
    [25]
    张宇亭, 安晓宇, 晋亚斐. 隧道开挖引起上部建筑物沉降的离心模型试验研究[J]. 岩土工程学报, 2022, 44(增2): 54-57. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2022S2012.htm

    ZHANG Yu-ting, AN Xiao-yu, JIN Ya-fei. Centrifugal model tests on settlement of structures caused by tunnel excavation[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 54-57. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2022S2012.htm
    [26]
    FARRELL R P. Tunnelling in sands and the response of buildings[D]. Cambridge: University of Cambridge, 2010.
    [27]
    徐敬民, 章定文, 刘松玉. 地表框架结构作用下隧道施工诱发的砂质地层变形[J]. 岩土工程学报, 2022, 44(4): 602-612. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202204002.htm

    XU Jing-min, ZHANG Ding-wen, LIU Song-yu. Tunneling-induced sandy ground deformation affected by surface framed structures[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 602-612. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202204002.htm
    [28]
    WHITE D J, TAKE W A, BOLTON M D. Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry[J]. Géotechnique, 2003, 53(7): 619-631.
    [29]
    XU J M, FRANZA A, MARSHALL A M. Response of framed buildings on raft foundations to tunneling[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(11): 04020120.
    [30]
    COOK D A. Studies of settlement and crack damage in old and new facades[C]//International Masonry Society. Proceedings of the 3rd International Masonry Conference. London: International Masonry Society, 1992: 203-211.
    [31]
    BOSCARDIN M D, CORDING E J. Building response to excavation- induced settlement[J]. Journal of Geotechnical Engineering, 1989, 115(1): 1-21.
    [32]
    ZHAO Y Y. In situ soil testing for foundation performance prediction[D]. Cambridge: University of Cambridge, 2008.
    [33]
    BOLDINI D, LOSACCO N, FRANZA A, et al. Tunneling-induced deformation of bare frame structures on sand: numerical study of building deformations[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2021, 147: 04021116.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (213) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return