Citation: | ZHANG Hong-hai, YI Jia, LI Shan, LIU Hao, ZHONG Gang. Review on research of low-altitude airspace capacity evaluation[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 78-93. doi: 10.19818/j.cnki.1671-1637.2023.06.003 |
[1] |
周雄飞, 胡明华. 空域容量评估研究综述[J]. 中国民航飞行学院学报, 2016, 27(6): 37-40.
ZHOU Xiong-fei, HU Ming-hua. An overview on airspace capacity evaluation[J]. Journal of Civil Aviation Flight University of China, 2016, 27(6): 37-40. (in Chinese)
|
[2] |
BOWEN E, PEARCEY T. Delays in the flow of air traffic[J]. The Aeronautical Journal, 1948, 52(448): 251-258.
|
[3] |
FAA. FACT1: capacity needs in the national airspace system[R]. Washington DC: FAA, 2004.
|
[4] |
FAA. FACT2: capacity needs in the national airspace system[R]. Washington DC: FAA, 2007.
|
[5] |
FAA. FACT3: airport capacity needs in the national airspace system[R]. Washington DC: FAA, 2015.
|
[6] |
BULUSU V, SENGUPTA R, POLISHCHUK V, et al. Cooperative and non-cooperative UAS traffic volumes[C]//IEEE. 2017 International Conference on Unmanned Aircraft Systems (ICUAS). New York: IEEE, 2017: 1673-1681.
|
[7] |
BULUSU V, POLISHCHUK V. A threshold based airspace capacity estimation method for UAS traffic management[C]// IEEE. 2017 Annual IEEE International Systems Conference. New York: IEEE, 2017: 1-7.
|
[8] |
SALLEH M F B, CHI Wan-chao, WANG Zhen-kun, et al. Preliminary concept of adaptive urban airspace management for unmanned aircraft operations[C]//AIAA. 2018 AIAA Information Systems Infotech@Aerospace. Reston: AIAA, 2018: 1-12.
|
[9] |
全权, 李刚, 柏艺琴, 等. 低空无人机交通管理概览与建议[J]. 航空学报, 2020, 41(1): 323238.
QUAN Quan, LI Gang, BAI Yi-qin, et al. Low altitude UAV traffic management: an introductory overview and proposal[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(1): 323238. (in Chinese)
|
[10] |
PEARCEY T. Delays in landing of air traffic[J]. Aeronautical Journal, 1950, 52(456): 799-812.
|
[11] |
BLUMSTEIN A. The landing capacity of a runway[J]. Operations Research, 1959, 7(6): 752-763. doi: 10.1287/opre.7.6.752
|
[12] |
HOOTON E N, GALLIHER H P, WARSKOW M A, et al. Operational evaluation of airport runway design and capacity: a study of methods and techniques[R]. New York: DTIC, 1963.
|
[13] |
RATNER R S, SIDDIQUEE W, GLASER M B, et al. A methodology for evaluating the capacity of air traffic control systems[R]. Menlo Park: Stanford Research Institute, 1970.
|
[14] |
JANIC M, TOSIC V. Terminal airspace capacity model[J]. Transportation Research Part A: General, 1982, 16(4): 253-260. doi: 10.1016/0191-2607(82)90052-8
|
[15] |
JANIC M, TOSIC V. En route sector capacity model[J]. Transportation Science, 1991, 25(4): 299-307. doi: 10.1287/trsc.25.4.299
|
[16] |
FAA. Airport capacity and delay[R]. Washington DC: FAA, 1983.
|
[17] |
TOFUKUJI N. An enroute ATC simulation experiment for sector capacity estimation[J]. IEEE Transactions on Control Systems Technology, 1993, 1(3): 138-143. doi: 10.1109/87.251881
|
[18] |
GILBO E P. Airport capacity: representation, estimation, optimization[J]. IEEE Transactions on Control Systems Technology, 1993, 1(3): 144-154. doi: 10.1109/87.251882
|
[19] |
WANG Chao, ZHANG Xin-yue, XU Xiao-hao. Simulation study on airfield system capacity analysis using SIMMOD[C]// IEEE. 2008 International Symposium on Computational Intelligence and Design. New York: IEEE, 2008: 87-90.
|
[20] |
MAJUMDAR A, OCHIENG W, POLAK J. Estimation of European airspace capacity from a model of controller workload[J]. Journal of Navigation, 2002, 55(3): 381-403. doi: 10.1017/S037346330200190X
|
[21] |
温媛媛, 戴福青. 基于TAAM机场终端区容量评估方法研究[J]. 中国民航飞行学院学报, 2013, 24(6): 9-14.
WEN Yuan-yuan, DAI Fu-qing. Terminal area capacity assessment based on TAAM[J]. Journal of Civil Aviation Flight University of China, 2013, 24(6): 9-14. (in Chinese)
|
[22] |
SUNIL E, HOEKSTRA J M, ELLERBROEK J, et al. Metropolis: relating airspace structure and capacity for extreme traffic densities[C]//FAA. Proceedings of the 11th USA/Europe Air Traffic Management Research and Development Seminar (ATM2015). Washington DC: FAA, 2015: 23-26.
|
[23] |
SWEDISH W J. Upgraded FAA airfield capacity model, Volume 1: supplemental users guide[R]. Washington DC: FAA, 1981.
|
[24] |
SWEDISH W J. Upgraded FAA airfield capacity model, Volume 2: technical description of revisions[R]. Washington DC: FAA, 1981.
|
[25] |
LEE D A, KOSTIUK P F, HEMM R V, et al. Estimating the effects of the terminal area productivity programs[R]. Washington DC: NASA, 1997.
|
[26] |
LEE D A, NELSON C, SHAPIRO G. The aviation system analysis capability airport capacity and delay models[R]. Washington DC: NASA, 1998.
|
[27] |
STAMATOPOULOS M A, ZOGRAFOS K G, ODONI A R. A decision support system for airport strategic planning[J]. Transportation Research Part C: Emerging Technologies, 2004, 12(2): 91-117. doi: 10.1016/j.trc.2002.10.001
|
[28] |
田勇. 空中交通流量管理关键技术研究[D]. 南京: 南京航空航天大学, 2011.
TIAN Yong. Research on key techniques of air traffic flow management[D]. Nanjing: Nanjing University of Aeronautics and Astronautic, 2011. (in Chinese)
|
[29] |
冯晓磊, 唐鹤丹, 李明捷. 错列平行双跑道容量评估模型研究[J]. 数学的实践与认识, 2017, 47(11): 66-73.
FENG Xiao-lei, TANG He-dan, LI Ming-jie. Research on the capacity evaluation model of staggered parallel double runways[J]. Mathematics in Practice and Theory, 2017, 47(11): 66-73. (in Chinese)
|
[30] |
LI Xiong, LI Feng, CHEN Xiao-qing. Study on the configuration and capacity of the lateral runway based on the airport green operation[C]//IOP Publishing. 2017 International Conference on Environmental and Energy Engineering. Ostrava: IOP Publishing, 2017: 012032-1-8.
|
[31] |
沈志远, 胡莹莹. 考虑尾流影响的侧向双跑道机场的跑道容量研究[J]. 南京航空航天大学学报, 2020, 52(1): 161-170.
SHEN Zhi-yuan, HU Ying-ying. Runway capacity of lateral double-runway airport considering wake effect[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2020, 52(1): 161-170. (in Chinese)
|
[32] |
刘珂璇, 马兰. 隔离运行模式下开口V形跑道容量评估模型[J]. 中国科技论文, 2018, 13(7): 825-830. doi: 10.3969/j.issn.2095-2783.2018.07.019
LIU Ke-xuan, MA Lan. Capacity assessment of two open Ⅴ-shaped runways based on isolated operation mode[J]. China Sciencepaper, 2018, 13(7): 825-830. (in Chinese) doi: 10.3969/j.issn.2095-2783.2018.07.019
|
[33] |
冯奎奎, 翟文鹏, 王玮卿. 基于排队模型的乌鲁木齐机场容量评估[J]. 数学的实践与认识, 2019, 49(21): 1-8.
FENG Kui-kui, ZHAI Wen-peng, WANG Wei-qing. Capacity evaluation of Urumqi Airport based on queuing model[J]. Mathematics in Practice and Theory, 2019, 49(21): 1-8. (in Chinese)
|
[34] |
CHEUNG W L, PIPLANI R, ALAM S, et al. Dynamic capacity and variable runway configurations in airport slot allocation[J]. Computers and Industrial Engineering, 2021, 159: 107480. doi: 10.1016/j.cie.2021.107480
|
[35] |
MIRKOVIC B, TOSIC V. Airport apron capacity: estimation, representation, and flexibility[J]. Journal of Advanced Transportation, 2014, 48(2): 97-118. doi: 10.1002/atr.1250
|
[36] |
MIRKOVIC B. Airport apron capacity estimation-model enhancement[J]. Procedia-Social and Behavioral Sciences, 2011, 20: 1108-1117. doi: 10.1016/j.sbspro.2011.08.120
|
[37] |
CAI Kai-quan, LI Wei, JU Fei, et al. A scenario-based optimization approach to robust estimation of airport apron capacity[C]//IEEE. 2018 Integrated Communications, Navigation, Surveillance Conference (ICNS). New York: IEEE, 2018: 3A1-1-3A1-8.
|
[38] |
LIAO Chen-xi, WEI Zheng. Study on sector capacity and workload model of air traffic controllers based on least square method[C]//IEEE. 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). New York: IEEE, 2020: 1058-1062.
|
[39] |
WELCH J D, ANDREWS J W, MARTIN B D, et al. Macroscopic workload model for estimating en route sector capacity[C]//FAA. Proceedings of 7th USA/Europe ATM Research and Development Seminar. Washington DC: FAA, 2007: 1-17.
|
[40] |
TIAN Yong, WAN Li-li, YANG Shuang-shuang. Research on the method of sector dynamic capacity evaluation[J]. System Engineering—Theory and Practice, 2014, 34(8): 2163-2169.
|
[41] |
罗凤娥, 齐放, 赵琪, 等. 基于改进的DORATASK飞行签派员工作负荷评估[J]. 科技和产业, 2021, 21(4): 240-243.
LUO Feng-e, QI Fang, ZHAO Qi, et al. Flight dispatcher workload assessment based on improved DORATASK[J]. Science Technology and Industry, 2021, 21(4): 240-243. (in Chinese)
|
[42] |
董襄宁. 扇区容量评估及复杂性分析[D]. 南京: 南京航空航天大学, 2017.
DONG Xiang-ning. Sector capacity evaluation and complexity analysis[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017. (in Chinese)
|
[43] |
KAGEYAMA K. ATC procedures modeling for capacity estimation of Japanese airspace[C]//AIAA. 2017 AIAA Modeling and Simulation Technologies Conference. Reston: AIAA, 2017: 1-10.
|
[44] |
ZHANG Ming, SHAN Le, LIU Kai, et al. Terminal airspace sector capacity estimation method based on the ATC dynamical model[J]. Kybernetes, 2016, 45(6): 884-899.
|
[45] |
MAJEED M, SU Rong. Neural partial differentiation-based estimation of terminal airspace sector capacity[J]. SAE International Journal of Aerospace, 2021, 14(2): 203-217.
|
[46] |
任广建, 朱金福, 卢朝阳. 基于ES模型的扇区容量评估研究[J]. 航空计算技术, 2018, 48(6): 40-44.
REN Guang-jian, ZHU Jin-fu, LU Chao-yang. Research on assessment method of sector capacity based on ES model[J]. Aeronautical Computing Technique, 2018, 48(6): 40-44. (in Chinese)
|
[47] |
张文倩, 王瑛, 严伟, 等. 恶劣天气下的多扇区动态容量评估方法[J]. 火力与指挥控制, 2019, 44(3): 126-130, 140.
ZHANG Wen-qian, WANG Ying, YAN Wei, et al. Research on multi-sector dynamic capacity evaluation method in severe weather[J]. Fire Control and Command Control, 2019, 44(3): 126-130, 140. (in Chinese)
|
[48] |
LIU Lu. Terminal airspace capacity evaluation model under weather condition from perspective of a controller[J]. International Journal of Aerospace Engineering, 2018(2): 1-11.
|
[49] |
黄海清, 甘旭升, 丁黎颖, 等. 军事活动影响下的终端区容量评估方法研究[J]. 航空工程进展, 2020, 11(3): 344-352.
HUANG Hai-qing, GAN Xu-sheng, DING Li-ying, et al. Study on capacity assessment method of terminal area under the influence of military activities[J]. Advances in Aeronautical, Science and Engineering, 2020, 11(3): 344-352. (in Chinese)
|
[50] |
刘璐. 气象影响下终端区空域短期容量预测研究[D]. 南京: 南京航空航天大学, 2018.
LIU Lu. Research on short-term terminal capacity assessment under weather conditions[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018. (in Chinese)
|
[51] |
王笑天, 白乃贵. 基于AirTop的武汉天河国际机场空域容量仿真评估[J]. 飞机设计, 2018, 38(1): 72-75.
WANG Xiao-tian, BAI Nai-gui. Airspace capacity simulation evaluation of Wuhan Tianhe International Airport based on AirTop[J]. Aircraft Design, 2018, 38(1): 72-75. (in Chinese)
|
[52] |
高伟, 康道驰. 基于增维细胞传输模型的区域管制空域容量评估[J]. 科学技术与工程, 2020, 20(29): 12211-12217.
GAO Wei, KANG Dao-chi. Regional controlled airspace capacity assessment based on an augmented cell transport model[J]. Science Technology and Engineering, 2020, 20(29): 12211-12217. (in Chinese)
|
[53] |
孙海勇, 刘裕旭. 不同运行模式下的远距平行跑道容量研究[J]. 航空计算技术, 2019, 49(5): 59-62, 66.
SUN Hai-yong, LIU Yu-xu. Research on long parallel runway capacity in different operation modes[J]. Aeronautical Computing Technique, 2019, 49(5): 59-62, 66. (in Chinese)
|
[54] |
王强, 左杰俊, 钟琦, 等. 基于AnyLogic仿真的中小机场容量评估分析[J]. 航空计算技术, 2020, 50(3): 21-24.
WANG Qiang, ZUO Jie-jun, ZHONG Qi, et al. Capacity evaluation analysis of small and medium airports based on AnyLogic simulation[J]. Aeronautical Computing Technique, 2020, 50(3): 21-24. (in Chinese)
|
[55] |
PARAMBATH S K. Capacity of ATC sectors in Chennai Upper Area Control Centre[C]//IEEE. 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT). New York: IEEE, 2020: 1-7.
|
[56] |
RAMAMOORTHY K, HUNTER G. Simulation-based airport capacity estimation[C]//NASA. 2013 Aviation Technology, Integration, and Operations Conference. Washington DC: NASA, 2013: 14-28.
|
[57] |
BARRER J, KUZMINSKI P, SWEDISH W. Analyzing the runway capacity of complex airports[C]//AIAA. 5th ATIO and 16th Lighter-Than-Air Systems Technology. and Balloon Systems Conferences. Reston: AIAA, 2005: 1-7.
|
[58] |
胡青云. 基于复杂空域的多机场终端区扇区优化研究[D]. 广汉: 中国民用航空飞行学院, 2020.
HU Qing-yun. Research on sector optimization of multi-airport terminal area based on complex airspace[D]. Guanghan: Civil Aviation Flight University of China, 2020. (in Chinese)
|
[59] |
赵征. 空域容量评估与预测技术研究[D]. 南京: 南京航空航天大学, 2015.
ZHAO Zheng. Research on airspace capacity assessment and forecast[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015. (in Chinese)
|
[60] |
赵征, 胡明华. 机场历史高峰服务能力评估方法研究[J]. 航空计算技术, 2015, 45(1): 17-21.
ZHAO Zheng, HU Ming-hua. Research on peak service rate of airport[J]. Aeronautical Computing Technique, 2015, 45(1): 17-21. (in Chinese)
|
[61] |
LYU Zhi-han, SONG Hou-bing, BASANTA-VAL P, et al. Next-generation big data analytics: state of the art, challenges, and future research topics[J]. IEEE Transactions on Industrial Informatics, 2017, 13(4): 1891-1899. http://discovery.ucl.ac.uk/10043069/1/Review%20on%20Network%20Big%20Data_v6.pdf
|
[62] |
ZHANG Kai, LIU Yong-xin, WANG Jian, et al. Tree-based airspace capacity estimation[C]//IEEE. 2020 Integrated Communications Navigation and Surveillance Conference (ICNS). New York: IEEE, 2020: 5C1-1-5C1-8.
|
[63] |
莫凡. 基于机器学习的扇区容量评估方法研究[D]. 南京: 南京航空航天大学, 2020.
MO Fan. Research on sector capacity evaluation method based on machine learning[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020. (in Chinese)
|
[64] |
CHEN Jia-tong, CAI Kai-quan, LI Wei, et al. An airspace capacity estimation model based on spatio-temporal graph convolutional networks considering weather impact[C]//IEEE. 2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC). New York: IEEE, 2021: 1-7.
|
[65] |
胡锦文, 程炜. 江西通航产业高质量发展研究[J]. 合作经济与科技, 2022, 692(21): 10-12.
HU Jin-wen, CHENG Wei. Study on the high quality development of Jiangxi general aviation industry[J]. Co-Operative Economy and Science, 2022, 692(21): 10-12. (in Chinese)
|
[66] |
张洪海, 邹依原, 张启钱, 等. 未来城市空中交通管理研究综述[J]. 航空学报, 2021, 42(7): 82-106.
ZHANG Hong-hai, ZOU Yi-yuan, ZHANG Qi-qian, et al. Future urban air mobility management: review[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(7): 82-106. (in Chinese)
|
[67] |
李诚龙, 屈文秋, 李彦冬, 等. 面向eVTOL航空器的城市空中运输交通管理综述[J]. 交通运输工程学报, 2020, 20(4): 35-54. doi: 10.19818/j.cnki.1671-1637.2020.04.003
LI Cheng-long, QU Wen-qiu, LI Yan-dong, et al. Overview of traffic management of urban air mobility (UAM) with eVTOL aircraft[J]. Journal of Traffic and Transportation Engineering, 2020, 20(4): 35-54. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.04.003
|
[68] |
张洪海, 李姗, 夷珈, 等. 城市低空航路规划研究综述[J]. 南京航空航天大学学报, 2021, 53(6): 827-838.
ZHANG Hong-hai, LI Shan, YI Jia, et al. Review on urban low-altitude air route planning[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2021, 53(6): 827-838. (in Chinese)
|
[69] |
MUELLER E R. Enabling airspace integration for high density urban air mobility[R]. Washington DC: NASA, 2017.
|
[70] |
陈义友, 张建平, 邹翔, 等. 民用无人机交通管理体系架构及关键技术[J]. 科学技术与工程, 2021, 21(31): 13221-13237.
CHEN Yi-you, ZHANG Jian-ping, ZOU Xiang, et al. System framework and key technologies of civil unmanned aircraft system traffic management[J]. Science Technology and Engineering, 2021, 21(31): 13221-13237. (in Chinese)
|
[71] |
JIANG Tao, GELLER J, NI Dai-heng, et al. Unmanned aircraft system traffic management: concept of operation and system architecture[J]. International Journal of Transportation Science and Technology, 2016, 5(3): 123-135.
|
[72] |
HOEKSTRA J M, ELLERBROEK J, SUNIL E, et al. Geovectoring: reducing traffic complexity to increase the capacity of UAV airspace[C]//ICRAT. International Conference for Research in Air Transportation. Barcelona: ICRAT, 2018: 1-8.
|
[73] |
MOHAMED SALLEH M F B, LOW K H. Concept of operations (ConOps) for traffic management of unmanned aircraft systems (TM-UAS) in urban environment[C]//AIAA. 2017 AIAA Information Systems—AIAA Infotech Aerospace. Reston: AIAA, 2017: 1-13.
|
[74] |
CHO J, YOON Y. How to assess the capacity of urban airspace: a topological approach using keep-in and keep-out geofence[J]. Transportation Research Part C: Emerging Technologies, 2018, 92: 137-149.
|
[75] |
张玉梅, 苑永月. 我国低空空域管理现状与发展策略[J]. 电子技术, 2020, 49(7): 104-105.
ZHANG Yu-mei, YUAN Yong-yue. Situation and development strategy of lower altitude airspace management in China[J]. Electronic Technology, 2020, 49(7): 104-105. (in Chinese)
|
[76] |
石潇竹. 我国低空空域结构调整与划设探讨[J]. 指挥信息系统与技术, 2010, 1(3): 23-26.
SHI Xiao-zhu. Discussion on layout of Chinese low altitude airspace structure[J]. Command Information System and Technology, 2010, 1(3): 23-26. (in Chinese)
|
[77] |
高萍, 王古常, 郑幸, 等. 无人机空域飞行的现状及发展趋势[C]//CSAA. 2014(第五届)中国无人机大会论文集. 北京: CSAA, 2014: 638-641.
GAO Ping, WANG Gu-chang, ZHENG Xing, et al. Status and development trend of UAV airspace flight[C]//CSAA. 2014 (5th) China UAV Conference Proceedings. Beijing: CSAA, 2014: 638-641. (in Chinese)
|
[78] |
GHARIBI M, BOUTABA R, WASLANDER S L. Internet of drones[J]. IEEE Access, 2016, 4: 1148-1162.
|
[79] |
SUNIL E, ELLERBROEK J, HOEKSTRA J, et al. An analysis of decentralized airspace structure and capacity using fast-time simulations[J]. Journal of Guidance, Control and Dynamics, 2017, 40(1): 38-51.
|
[80] |
ROBERGE V, TARBOUCHI M, LABONTÉ G. Fast genetic algorithm path planner for fixed-wing military UAV using GPU[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(5): 2105-2117.
|
[81] |
LIAO Xiao-han, XU Chen-chen, YUE Huan-yin. Enable UAVs safely flight in low-altitude: a preliminary research of the public air route network of UAVs[C]//IEEE. 2019 International Conference on Unmanned Aircraft Systems (ICUAS). New York: IEEE, 2019: 959-964.
|
[82] |
张启钱, 许卫卫, 张洪海, 等. 复杂低空物流无人机路径规划[J]. 北京航空航天大学学报, 2020, 46(7): 1275-1286.
ZHANG Qi-qian, XU Wei-wei, ZHANG Hong-hai, et al. Path planning for logistics UAV in complex low-altitude airspace[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1275-1286. (in Chinese)
|
[83] |
唐立, 郝鹏, 张学军. 基于改进蚁群算法的山区无人机路径规划方法[J]. 交通运输系统工程与信息, 2019, 19(1): 158-164.
TANG Li, HAO Peng, ZHANG Xue-jun. An UAV path planning method in mountainous area based on an improved ant colony algorithm[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(1): 158-164. (in Chinese)
|
[84] |
张洪海, 李翰, 刘皞, 等. 城市区域物流无人机路径规划[J]. 交通运输系统工程与信息, 2020, 20(6): 22-29.
ZHANG Hong-hai, LI Han, LIU Hao, et al. Path planning for logistics unmanned aerial vehicle in urban area[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(6): 22-29. (in Chinese)
|
[85] |
王云常, 戴朱祥, 李涛. 基于A星算法与人工势场法的无人机路径规划[J]. 扬州大学学报(自然科学版), 2019, 22(3): 36-38, 49.
WANG Yun-chang, DAI Zhu-xiang, LI Tao. UAV path planning based on A-star algorithm and artificial potential field method[J]. Journal of Yangzhou University (Natural Science Edition), 2019, 22(3): 36-38, 49. (in Chinese)
|
[86] |
LIN Xi, WANG Chen-zhang, WANG Kai-ping, et al. Trajectory planning for unmanned aerial vehicles in complicated urban environments: a control network approach[J]. Transportation Research Part C: Emerging Technologies, 2021, 128: 103-120.
|
[87] |
DIMAS N F. A GIS-based analysis for selecting ground infrastructure locations for urban air mobility[D]. Munich: Environmental Engineering Technical University of Munich, 2018.
|
[88] |
SHAVARANI S M, NEJAD M G, RISMANCHIAN F, et al. Application of hierarchical facility location problem for optimization of a drone delivery system: a case study of Amazon prime air in the city of San Francisco[J]. The International Journal of Advanced Manufacturing Technology, 2018, 95(9): 3141-3153.
|
[89] |
钱欣悦, 张洪海, 张芳, 等. 末端配送物流无人机起降点选址分配问题研究[J]. 武汉理工大学学报(交通科学与工程版), 2021, 45(4): 682-687, 693.
QIAN Xin-yue, ZHANG Hong-hai, ZHANG Fang, et al. Research on location allocation of UAV landing points for terminal distribution logistics[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering), 2021, 45(4): 682-687, 693. (in Chinese)
|
[90] |
GOLABI M, SHAVARANI S M, IZBIRAK G. An edge-based stochastic facility location problem in UAV-supported humanitarian relief logistics: a case study of Tehran Earthquake[J]. Natural Hazards, 2017, 87(3): 1545-1565.
|
[91] |
任新惠, 王柳. 即时配送下无人机全自动机场分区选址模型[J]. 计算机工程与应用, 2021, 57(10): 266-272.
REN Xin-hui, WANG Liu. Location model of automatic airport partitioning for unmanned aerial vehicles under urban instant delivery[J]. Computer Engineering and Applications, 2021, 57(10): 266-272. (in Chinese)
|
[92] |
陈刚, 付江月. 军民融合背景下无人机配送中心选址问题研究[J]. 计算机工程与应用, 2019, 55(8): 226-231, 237.
CHEN Gang, FU Jiang-yue. Drone distribution center location problem under military-civilian integration strategy[J]. Computer Engineering and Applications, 2019, 55(8): 226-231, 237. (in Chinese)
|
[93] |
HONG I, KUBY M, MURRAY A T. A range-restricted recharging station coverage model for drone delivery service planning[J]. Transportation Research Part C: Emerging Technologies, 2018, 90: 198-212.
|
[94] |
CHAUHAN D, UNNIKRISHNAN A, FIGLIOZZI M. Maximum coverage capacitated facility location problem with range constrained drones[J]. Transportation Research Part C: Emerging Technologies, 2019, 99: 1-18.
|
[95] |
VENKATESH N, PAYAN A P, JUSTIN C Y, et al. Optimal siting of sub-urban air mobility (sUAM) ground architectures using network flow formulation[C]//AIAA. AIAA Aviation 2020 Forum. Reston: AIAA, 2020: 1-19.
|
[96] |
张洪海, 冯棣坤, 张晓玮, 等. 城市物流无人机起降点布局规划研究[J]. 交通运输系统工程与信息, 2022, 22(3): 207-214.
ZHANG Hong-hai, FENG Di-kun, ZHANG Xiao-wei, et al. Urban logistics unmanned aerial vehicle vertiports layout planning[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22(3): 207-214. (in Chinese)
|
[97] |
PREIS L. Quick sizing, throughput estimating and layout planning for vtol aerodromes—a methodology for vertiport design[C]//AIAA. AIAA Aviation 2021 Forum. Reston: AIAA, 2021: 1-19.
|
[98] |
EASA. Prototype technical design specifications for vertiports[R]. Cologne: EASA, 2022.
|
[99] |
FAA. Engineering brief No. 105 vertiport design[R]. Washington DC: FAA, 2022.
|
[100] |
VASCIK P D, HANSMAN R J. Development of vertiport capacity envelopes and analysis of their sensitivity to topological and operational factors[C]//AIAA. AIAA Scitech 2019 Forum. Reston: AIAA, 2019: 1-26.
|
[101] |
ZHANG Hong-hai, FEI Yu-han, LI Jing-yu, et al. Method of vertiport capacity assessment based on queuing theory of unmanned aerial vehicles[J]. Sustainability, 2023, 15(1): 709-732.
|
[102] |
RIMJHA M, TRANI A. Urban air mobility: factors affecting vertiport capacity[C]//IEEE. 2021 Integrated Communications Navigation and Surveillance Conference (ICNS). New York: IEEE, 2021: 1-14.
|
[103] |
BULUSU V, SENGUPTA R, LIU Zhi-long. Unmanned aviation: to be free or not to be free?[C]//FAA. 7th International Conference on Research in Air Transportation. Washington DC: FAA, 2016: 1-8.
|
[104] |
邹依原. 智慧城市环境下无人机安全间隔标定方法研究[D]. 南京: 南京航空航天大学, 2021.
ZOU Yi-yuan. Research on the demarcation method of safe separation for unmanned aerial vehicle in future smart cities[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021. (in Chinese)
|
[105] |
BULUSU V, POLISHCHUK V, SENGUPTA R, et al. Capacity estimation for low altitude airspace[C]//AIAA. 17th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2017: 4266.
|
[106] |
BULUSU V, SENGUPTA R, MUELLER E R, et al. A throughput based capacity metric for low-altitude airspace[C]// AIAA. 2018 Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2018: 1-9.
|