Citation: | HUANG He, LI Wen-long, YANG Lan, WANG Hui-feng, RU Feng, GAO Tao. Vehicle long-term target tracker optimized by improved carnivorous plant algorithm[J]. Journal of Traffic and Transportation Engineering, 2023, 23(6): 283-300. doi: 10.19818/j.cnki.1671-1637.2023.06.019 |
[1] |
HASSABALLAH M, KENK M A, MUHAMMAD K, et al. Vehicle detection and tracking in adverse weather using a deep learning framework[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 22(7): 4230-4242.
|
[2] |
YANG Biao, YAN Guo-cheng, LIU Zhan-wen, et al. Perception of moving objects in traffic scenes based on heterogeneous graph learning[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 238-250. (in Chinese)
|
[3] |
FIAZ M, MAHMOOD A, JAVED S, et al. Handcrafted and deep trackers: recent visual object tracking approaches and trends[J]. ACM Computing Surveys, 2019, 52(2): 1-44.
|
[4] |
ALTAN A, HACIOGLU R. Model predictive control of three-axis gimbal system mounted on UAV for real-time target tracking under external disturbances[J]. Mechanical Systems and Signal Processing, 2020, 138: 106548. doi: 10.1016/j.ymssp.2019.106548
|
[5] |
BOLME D S, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]// IEEE. Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2010: 2544-2550.
|
[6] |
DANELLJAN M, KHAN F S, FELSBERG M, et al. Adaptive color attributes for real-time visual tracking[C]// IEEE. Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2014: 1090-1097.
|
[7] |
HENRIQUES J F, CASEIRO R, MARTINS P, et al. High- speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3): 583-596. doi: 10.1109/TPAMI.2014.2345390
|
[8] |
DANELLJAN M, HAGER G, SHAHBAZ K F, et al. Learning spatially regularized correlation filters for visual tracking[C]//IEEE. Proceedings of the IEEE International Conference on Computer Vision. New York: IEEE, 2015: 4310-4318.
|
[9] |
DANELLJAN M, HAGER G, KHAN F S, et al. Discriminative scale space tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 39(8): 1561-1575.
|
[10] |
DANELLJAN M, BHAT G, SHAHBAZ K F, et al. ECO: efficient convolution operators for tracking[C]//IEEE. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2017: 6638-6646.
|
[11] |
WANG Nai-yan, YEUNG D Y. Learning a deep compact image representation for visual tracking[J]. Advances in Neural Information Processing Systems, 2013, 26: 1-9.
|
[12] |
NAM H, HAN B. Learning multi-domain convolutional neural networks for visual tracking[C]// IEEE. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 4293-4302.
|
[13] |
BERTINETTO L, VALMADRE J, HENRIQUES J F, et al. Fully-convolutional Siamese networks for object tracking[C]//Springer. Proceedings of 2016 European Conference on Computer Vision. Berlin: Springer, 2016: 850-865.
|
[14] |
LI Bo, YAN Jun-jie, WU Wei, et al. High performance visual tracking with Siamese region proposal network[C]//IEEE. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2018: 8971-8980.
|
[15] |
LI Bo, WU Wei, WANG Qiang, et al. SiamRPN++ : evolution of siamese visual tracking with very deep net-works[C]// IEEE. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2019: 4282-4291.
|
[16] |
HE Kai-ming, ZHANG Xiang-yu, REN Shao-qing, et al. Deep residual learning for image recognition[C]// IEEE. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2016: 770-778.
|
[17] |
XU Yin-da, WANG Ze-yu, LI Zuo-xin, et al. SiamFC++ : towards robust and accurate visual tracking with target estimation guidelines[C]//AAAI. Proceedings of the 2020 AAAI Conference on Artificial Intelligence. New York: AAAI, 2020: 12549-12556.
|
[18] |
ZHANG Zhi-peng, PENG Hou-wen, FU Jian-long, et al. Ocean: object-aware anchor-free tracking[C]//Springer. Proceedings of 2020 European Conference on Computer Vision. Berlin: Springer, 2020: 771-787.
|
[19] |
SZEGEDY C, LIU Wei, JIA Yang-qing, et al. Going deeper with convolutions[C]//IEEE. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2015: 1-9.
|
[20] |
HUANG He, LI Wen-long, WU Kun, et al. 3D UAV low altitude penetration optimization based on ALCE-SSA[J]. Journal of Nanjing University (Natural Science), 2022, 58(3): 448-459. (in Chinese)
|
[21] |
ONG K M, ONG P, SIA C K, et al. Effective moving object tracking using modified flower pollination algorithm for visible image sequences under complicated background[J]. Applied Soft Computing, 2019, 83: 105625. doi: 10.1016/j.asoc.2019.105625
|
[22] |
NENAVATH H, JATOTH R K. Hybrid SCA-TLBO: a novel optimization algorithm for global optimization and visual tracking[J]. Neural Computing and Applications, 2019, 31(9): 5497-5526. doi: 10.1007/s00521-018-3376-6
|
[23] |
ZHANG Huang-long, GAO Zeng, ZHANG Jie, et al. Hybridizing extended ant lion optimizer with sine cosine algorithm approach for abrupt motion tracking[J]. EURASIP Journal on Image and Video Processing, 2020, 2020(1): 1-18. doi: 10.1186/s13640-020-0490-z
|
[24] |
ONG P, CHONG T K, ONG K M, et al. Tracking of moving athlete from video sequences using flower pollination algorithm[J]. The Visual Computer, 2022, 38(3): 939-962. doi: 10.1007/s00371-021-02060-2
|
[25] |
HUANG He, LI Wen-long, WU Kun, et al. MFOPA tracker with dynamic adaptive feature fusion[J]. Acta Electronica Sinica, 2023, 51(5): 1350-1358. (in Chinese)
|
[26] |
ONG K M, ONG P, SIA C K. A carnivorous plant algorithm for solving global optimization problems[J]. Applied Soft Computing, 2021, 98: 106833.
|
[27] |
GACAV C, BENLIGIRAY B, ÖZKAN K, et al. Facial expression recognition with FHOG features[C]//IEEE. 2018 26th Signal Processing and Communications Applications Conference (SIU). New York: IEEE, 2018: 1-4.
|
[28] |
PERAZA-VAZQUEZ H, PENA-DELGADO A F, ECHAVARRIA-CASTILLO G, et al. A bio-inspired method for engineering design optimization inspired by dingoes hunting strategies[J]. Mathematical Problems in Engineering, 2021, 2021: 1-19.
|
[29] |
ABUALIGAH L, YOUSRI D, ABD E M, et al. Aquila optimizer: a novel meta-heuristic optimization algorithm[J]. Computers and Industrial Engineering, 2021, 157: 107250.
|
[30] |
MUELLER M, SMITH N, GHANEM B. A benchmark and simulator for UAV tracking[C]//Springer. Proceedings of 2016 European Conference on Computer Vision. Berlin: Springer, 2016: 445-461.
|
[31] |
FAN H, LIN L, YANG F, et al. LaSOT: a high-quality benchmark for large-scale single object tracking[C]//IEEE. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. New York: IEEE, 2019: 5374-5383.
|