Volume 24 Issue 1
Feb.  2024
Turn off MathJax
Article Contents
DUAN Lan, YUAN Yi-hong, WANG Chun-sheng, BRÜHWILER Eugen. Review on research of long lasting UHPFRC composite steel bridge deck[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 68-84. doi: 10.19818/j.cnki.1671-1637.2024.01.004
Citation: DUAN Lan, YUAN Yi-hong, WANG Chun-sheng, BRÜHWILER Eugen. Review on research of long lasting UHPFRC composite steel bridge deck[J]. Journal of Traffic and Transportation Engineering, 2024, 24(1): 68-84. doi: 10.19818/j.cnki.1671-1637.2024.01.004

Review on research of long lasting UHPFRC composite steel bridge deck

doi: 10.19818/j.cnki.1671-1637.2024.01.004
Funds:

National Natural Science Foundation of China 52078044

Innovation Capability Support Program of Shaanxi Province 2019TD-022

Fundamental Research Funds for the Central Universities 300102219309

More Information
  • Author Bio:

    DUAN Lan(1985-), female, associate professor, PhD, DL0310DL@163.com

    WANG Chun-sheng(1972-), male, professor, PhD, wcs2000wcs@163.com

  • Received Date: 2023-08-30
    Available Online: 2024-03-13
  • Publish Date: 2024-02-25
  • The research progress of ultra-high performance fiber reinforced cementitious (UHPFRC) composite material composite steel bridge decks was summarized and analyzed from three aspects, including the material selection for the high resilience composite layer, interface force transfer mechanism and damage accumulation mechanism, and design method and engineering practice. The effects of fiber type and fiber content on the axial tensile and flexural properties of the UHPFRC were summarized. Several constitutive models were determined for the structural analysis of the composite steel bridge deck. Technical characteristics were compared and analyzed for the interface design methods adopting hot, cold, and hybrid connections. The experimental and theoretical achievements in the force transfer mechanism of adhesive interface, shear connector interface with cold connection, and hybrid connection interface were summarized. The research results of rational configuration, design method, specification, and engineering practice were summarized for the composite steel bridge deck based on the cold connection design concept. The innovation and development directions of long lasting composite steel bridge decks were also discussed. Research results show that the addition of single or hybrid fibers can comprehensively improve the strain strengthening ability, flexural deformation ability, fracture resistance, crack width control ability, and fatigue resistance of the UHPFRC. The simplified three-linear constitutive model of UHPFRC under the axial tension powerfully supports the design and calculation of steel bridge decks. The elastoplastic damage constitutive model can describe the irreversible fatigue damage accumulation. The toughening effect and reliability of the composite interface with cold connection are verified. The innovative shear connector can both improve the composition effect and toughen the UHPFRC layer. The hybrid connection interface has comprehensive technical advantages such as reducing the local stress concentration, improving the overall shear stiffness, improving the force transfer of the interface, and enhancing the construction efficiency. The cohesive interface constitutive model can realize the inversion analysis of the cumulative damage of interface with cold connection, and the interface damage prediction results are accurate and reliable. The UHPFRC composite steel bridge deck based on the cold connection can effectively improve the local stiffness of the steel bridge deck. The related design method can support the formulation of standards and engineering practices. The cost effectiveness of the UHPFRC, as well as the efficiency and reliability of the interface connection should be improved, so as to support the design and construction of composite steel bridge decks with long life, high resilience, lightweight, easy maintenance, and low energy consumption.

     

  • loading
  • [1]
    TSAKOPOULOS P A, FISHER J W. Full-scale fatigue tests of steel orthotropic decks for the Williamsburg Bridge[J]. Journal of Bridge Engineering ASCE, 2003, 8(5): 323-333. doi: 10.1061/(ASCE)1084-0702(2003)8:5(323)
    [2]
    王春生, 付炳宁, 张芹, 等. 正交异性钢桥面板足尺疲劳试验[J]. 中国公路学报, 2013, 26(2): 69-76. doi: 10.3969/j.issn.1001-7372.2013.02.011

    WANG Chun-sheng, FU Bing-ning, ZHANG Qin, et al. Fatigue test on full-scale orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2013, 26(2): 69-76. (in Chinese) doi: 10.3969/j.issn.1001-7372.2013.02.011
    [3]
    张清华, 卜一之, 李乔. 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报, 2017, 30(3): 14-30, 39. doi: 10.3969/j.issn.1001-7372.2017.03.002

    ZHANG Qing-hua, BU Yi-zhi, LI Qiao. Review on fatigue problems of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30(3): 14-30, 39. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.03.002
    [4]
    王春生, 翟慕赛, 唐友明, 等. 钢桥面板疲劳裂纹耦合扩展机理的数值断裂力学模拟[J]. 中国公路学报, 2017, 30(3): 82-95. doi: 10.3969/j.issn.1001-7372.2017.03.009

    WANG Chun-sheng, ZHAI Mu-sai, TANG You-ming, et al. Numerical fracture mechanical simulation of fatigue crack coupled propagation mechanism for steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30(3): 82-95. (in Chinese) doi: 10.3969/j.issn.1001-7372.2017.03.009
    [5]
    李传习, 柯璐, 陈卓异, 等. 正交异性钢桥面板弧形切口及其CFRP补强的疲劳性能[J]. 中国公路学报, 2021, 34(5): 63-75. doi: 10.3969/j.issn.1001-7372.2021.05.007

    LI Chuan-xi, KE Lu, CHEN Zhuo-yi, et al. Fatigue behavior and CFRP reinforcement of diaphragm cutouts in orthotropic steel bridge decks[J]. China Journal of Highway and Transport, 2021, 34(5): 63-75. (in Chinese) doi: 10.3969/j.issn.1001-7372.2021.05.007
    [6]
    WANG Chun-sheng, ZHAI Mu-sai, DUAN Lan, et al. Cold reinforcement and evaluation of steel bridges with fatigue cracks[J]. Journal of Bridge Engineering, 2018, 23(4): 01048014.
    [7]
    WANG Chun-sheng, WANG Yu-zhu, DUAN Lan, et al. Fatigue performance evaluation and cold reinforcement for old steel bridges[J]. Structural Engineering International, 2019, 29(4): 563-569. doi: 10.1080/10168664.2019.1593069
    [8]
    李传习, 雷智杰, 冯峥, 等. 轻量化STC-钢组合桥面板静力性能研究[J]. 交通科学与工程, 2021, 37(1): 26-33. doi: 10.3969/j.issn.1674-599X.2021.01.005

    LI Chuan-xi, LEI Zhi-jie, FENG Zheng, et al. Research on static performance of lightweight STC-steel composite deck[J]. Journal of Transport Science and Engineering, 2021, 37(1): 26-33. (in Chinese) doi: 10.3969/j.issn.1674-599X.2021.01.005
    [9]
    WILLE K, EL-TAWIL S, NAAMAN A E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading[J]. Cement and Concrete Composites, 2014, 48: 53-66. doi: 10.1016/j.cemconcomp.2013.12.015
    [10]
    MAKITA T, BRÜHWILER E. Tensile fatigue behaviour of ultra-high performance fibre reinforced concrete (UHPFRC)[J]. Materials and Structures, 2014, 47(3): 475-491. doi: 10.1617/s11527-013-0073-x
    [11]
    WANG Shu-nan, XU Li-hua, YIN Cong-ru, et al. Constitutive behavior of ultra-high-performance steel fiber reinforced concrete under monotonic and cyclic tension[J]. Journal of Building Engineering, 2023, 68: 105991. doi: 10.1016/j.jobe.2023.105991
    [12]
    王俊颜, 耿莉萍, 郭君渊, 等. UHPC的轴拉性能与裂缝宽度控制能力研究[J]. 哈尔滨工业大学学报, 2017, 49(12): 165-169. doi: 10.11918/j.issn.0367-6234.201705148

    WANG Jun-yan, GENG Li-ping, GUO Jun-yuan, et al. Experimental study on crack width control ability of ultra-high performance concrete[J]. Journal of Harbin Institute of Technology, 2017, 49(12): 165-169. (in Chinese) doi: 10.11918/j.issn.0367-6234.201705148
    [13]
    杲晓龙, 王俊颜, 郭君渊, 等. 循环荷载作用下超高性能混凝土的轴拉力学性能及本构关系模型[J]. 复合材料学报, 2021, 38(11): 3925-3938. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202111035.htm

    GAO Xiao-long, WANG Jun-yan, GUO Jun-yuan, et al. Axial tensile mechanical properties and constitutive relation model of ultra-high performance concrete under cyclic loading[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3925-3938. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202111035.htm
    [14]
    方志, 周腾, 刘路明, 等. 超高性能混凝土受拉性能试验研究[J]. 铁道学报, 2022, 44(5): 157-165. doi: 10.3969/j.issn.1001-8360.2022.05.020

    FANG Zhi, ZHOU Teng, LIU Lu-ming, et al. Experimental study on tensile properties of ultra-high performance concrete[J]. Journal of the China Railway Society, 2022, 44(5): 157-165. (in Chinese) doi: 10.3969/j.issn.1001-8360.2022.05.020
    [15]
    张哲, 邵旭东, 李文光, 等. 超高性能混凝土轴拉性能试验[J]. 中国公路学报, 2015, 28(8): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201508008.htm

    ZHANG Zhe, SHAO Xu-dong, LI Wen-guang, et al. Axial tensile behavior test of ultra high performance concrete[J]. China Journal of Highway and Transport, 2015, 28(8): 50-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201508008.htm
    [16]
    邓金岚, 杨简, 陈宝春, 等. 超高性能纤维增强混凝土单轴本构关系和钢纤维增强作用对其影响[J/OL]. 复合材料学报, 2024, DOI: 10.13801/j.cnki.fhclxb.20230613.001.

    DENG Jin-lan, YANG Jian, CHEN Bao-chun, et al. Uniaxial constitutive relation of ultra-high performance fiber reinforced concrete and the effect of steel fiber reinforcement on it[J/OL]. Acta Materiae Compositae Sinica, 2024, DOI: 10.13801/j.cnki.fhclxb.20230613.001.(inChinese)
    [17]
    王春生, 段兰, 王茜, 等. 超高性能钢纤维混凝土及其制备方法: 中国, 201710624944. X[P]. 2019-10-11.

    WANG Chun-sheng, DUAN Lan, WANG Qian, et al. Ultra-high performance steel fiber reinforced concrete and its mixed method: China, 201710624944. X[P]. 2019-10-11. (in Chinese)
    [18]
    MOBASHER B, LI An-ling, YAO Yi-ming, et al. Characterization of toughening mechanisms in UHPC through image correlation and inverse analysis of flexural results[J]. Cement and Concrete Composites, 2021, 122: 104157. doi: 10.1016/j.cemconcomp.2021.104157
    [19]
    FANG Hao-zhen, GU Ming-gen, ZHANG Shu-feng, et al. Effects of steel fiber and specimen geometric dimensions on the mechanical properties of ultra-high-performance concrete[J]. Materials, 2022, 15(9): 3027. doi: 10.3390/ma15093027
    [20]
    KANG S T, LEE Y, PARK Y D, et al. Tensile fracture properties of an ultra high performance fiber reinforced concrete (UHPFRC) with steel fiber[J]. Composite Structures, 2010, 92(1): 61-71. doi: 10.1016/j.compstruct.2009.06.012
    [21]
    ASHKEZARI G D, FOTOUHI F, RAZMARA M. Experimental relationships between steel fiber volume fraction and mechanical properties of ultra-high performance fiber-reinforced concrete[J]. Journal of Building Engineering, 2020, 32: 101613. doi: 10.1016/j.jobe.2020.101613
    [22]
    方志, 刘绍琨, 黄政宇, 等. 不同温度下超高性能混凝土的弯拉性能[J]. 硅酸盐学报, 2020, 48(11): 1732-1739. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202011007.htm

    FANG Zhi, LIU Shao-kun, HUANG Zheng-yu, et al. Flexural properties of ultra-high performance concrete under different temperatures[J]. Journal of the Chinese Ceramic Society, 2020, 48(11): 1732-1739. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB202011007.htm
    [23]
    DUAN Lan, BRÜHWILER E, WANG Chun-sheng. Cold stiffening of orthotropic steel decks by a composite UHPFRC layer[J]. Journal of Constructional Steel Research, 2020, 172: 106209. doi: 10.1016/j.jcsr.2020.106209
    [24]
    王春生, 张洋, 段兰. 共聚甲醛纤维超高性能水泥基复合材料抗弯性能试验研究[J]. 复合材料学报, 2024, 41(1): 374-383. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202401032.htm

    WANG Chun-sheng, ZHANG Yang, DUAN Lan. Flexural performance of ultra-high performance fiber reinforced cementitious composite material doped with copolymer formaldehyde fiber[J]. Acta Materiae Compositae Sinica, 2024, 41(1): 374-383. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE202401032.htm
    [25]
    邓宗才. 混杂纤维增强超高性能混凝土弯曲韧性与评价方法[J]. 复合材料学报, 2016, 33(6): 1274-1280. https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201606018.htm

    DENG Zong-cai. Flexural toughness and characterization method of hybrid fibers reinforced ultra-high performance concrete[J]. Acta Materiae Compositae Sinica, 2016, 33(6): 1274-1280. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FUHE201606018.htm
    [26]
    李福海, 刘耕园, 刘梦辉, 等. 纤维协同效应下超高性能混凝土的弯曲性能[J]. 同济大学学报(自然科学版), 2023, 51(12): 1835-1844. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202312005.htm

    LI Fu-hai, LIU Geng-yuan, LIU Meng-hui, et al. Flexural properties of ultra-high performance concrete under fiber synergistic effect[J]. Journal of Tongji University (Natural Science), 2023, 51(12): 1835-1844. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ202312005.htm
    [27]
    田长进. 免蒸养超高性能混凝土性能调控机制及其加固钢桥面板疲劳评估[D]. 济南: 山东大学, 2023.

    TIAN Chang-jin. Performance regulation mechanism of non-steam curing ultra-high-performance concrete and its fatigue assessment of reinforced steel bridge deck[D]. Jinan: Shandong University, 2023. (in Chinese)
    [28]
    韦亚平, 李绍成, 王有志, 等. 多尺度MgO膨胀剂与SAP协同作用对UHPC力学及收缩性能的影响[J]. 硅酸盐通报, 2023, 42(9): 3154-3165. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202309011.htm

    WEI Ya-ping, LI Shao-cheng, WANG You-zhi, et al. Synergistic effect of multi-scale MgO expansion agent and SAP on mechanical and shrinkage properties of UHPC[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(9): 3154-3165. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT202309011.htm
    [29]
    SHEN Pei-liang, LU Lin-nu, HE Yong-jia, et al. Experimental investigation on the autogenous shrinkage of steam cured ultra-high performance concrete[J]. Construction and Building Materials, 2018, 162: 512-522. doi: 10.1016/j.conbuildmat.2017.11.172
    [30]
    邓宗才, 连怡红, 赵连志. 膨胀剂、减缩剂对超高性能混凝土自收缩性能的影响[J]. 北京工业大学学报, 2021, 47(1): 61-69. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD202101008.htm

    DENG Zong-cai, LIAN Yi-hong, ZHAO Lian-zhi. Influence of expansion agent and shrinkage reducing agent on autogenous shrinkage of UHPC[J]. Journal of Beijing University of Technology, 2021, 47(1): 61-69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD202101008.htm
    [31]
    SHAHEEN E, SHRIVE N G. Optimization of mechanical properties and durability of reactive powder concrete[J]. ACI Materials Journal, 2006, 103(6): 444-451.
    [32]
    胡志豪, 黄政宇, 刘路明. 超高性能混凝土气体渗透性能的试验研究[J]. 铁道科学与工程学报, 2022, 19(1): 141-150. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202201016.htm

    HU Zhi-hao, HUANG Zheng-yu, LIU Lu-ming. Experimental research on gas permeability of ultra high performance concrete[J]. Journal of Railway Science and Engineering, 2022, 19(1): 141-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202201016.htm
    [33]
    张志豪, 陈露一, 黄有强, 等. 海洋侵蚀环境下超高性能混凝土的力学与耐久性能研究[J]. 混凝土与水泥制品, 2022(7): 1-4, 9. https://www.cnki.com.cn/Article/CJFDTOTAL-HNTW202207001.htm

    ZHANG Zhi-hao, CHEN Lu-yi, HUANG You-qiang, et al. Study on mechanical properties and durability of ultra-high performance concrete under marine erosion environment[J]. China Concrete and Cement Proeducts, 2022(7): 1-4, 9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNTW202207001.htm
    [34]
    王春生, 翟慕赛, HOUANKPO T N O, 等. 正交异性钢桥面板冷维护技术及评价方法[J]. 中国公路学报, 2016, 29(8): 50-58. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201608007.htm

    WANG Chun-sheng, ZHAI Mu-sai, HOUANKPO T N O, et al. Cold maintenance technique and assessment method for orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2016, 29(8): 50-58. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201608007.htm
    [35]
    DE JONG F B P. Renovation techniques for fatigue cracked orthotropic steel bridge decks[D]. Delft: Delft University of Technology, 2007.
    [36]
    BUITELAAR P, BRAAM R, KAPTIJN N. Reinforced high performance concrete overlay system for rehabilitation and strengthening of orthotropic steel bridge decks[C]//ASCE. 2004 Orthotropic Bridge Conference. Reston: ASCE, 2004: 384-401.
    [37]
    DE CORTE W, HELINCKS P, BOEL V, et al. Generalised fracture mechanics approach to the interfacial failure analysis of a bonded steel-concrete joint[J]. Fracttura Ed Integrita Struturale, 2017, 11(42): 147-160.
    [38]
    蒋金龙. 适于钢桥面铺装的钢-UHPC环氧增韧界面受力性能研究[D]. 重庆: 重庆交通大学, 2021.

    JIANG Jin-long. Study on mechanical properties of steel- UHPC epoxy toughened interface for steel deck pavement[D]. Chongqing: Chongqing Jiaotong University, 2021. (in Chinese)
    [39]
    DENG Peng-ru, MI Hong-ji, MITAMURA H, et al. Stress reduction effects of ultra-high performance fiber reinforced concrete overlaid steel bridge deck developed with a new interfacial bond method[J]. Construction and Building Materials, 2022, 328: 127104.
    [40]
    WANG Zhe, NIE Xin, FAN Jian-sheng, et al. Experimental and numerical investigation of the interfacial properties of non-steam-cured UHPC-steel composite beams[J]. Construction and Building Materials, 2019, 195: 323-339.
    [41]
    贺欣怡, 苏庆田, 姜旭, 等. 环氧胶粘结刚性铺装的正交异性桥面板力学性能[J]. 哈尔滨工业大学学报, 2020, 52(9): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202009004.htm

    HE Xin-yi, SU Qing-tian, JIANG Xu, et al. Mechanical properties of orthotropic steel deck with epoxy adhesively bonded rigid pavement[J]. Journal of Harbin Institute of Technology, 2020, 52(9): 25-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202009004.htm
    [42]
    李传习, 胡正, 李游, 等. 钢-超高性能混凝土胶接组合板受弯的界面性能[J]. 交通科学与工程, 2020, 36(4): 28-35. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJX202004005.htm

    LI Chuan-xi, HU Zheng, LI You, et al. Interfacial bonding performance of steel-ultra-high performance concrete adhesively bonded composite slabs[J]. Journal of Transport Science and Engineering, 2020, 36(4): 28-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSJX202004005.htm
    [43]
    LI You, MA Xiao-wan, LI Hong-yi, et al. Experimental study on flexural and interfacial shear properties of the steel-UHPC glued composite deck[J]. Engineering Structures, 2023, 293: 116643.
    [44]
    ZHANG Bo-shan, YU Jiang-jiang, CHEN Wei-zhen, et al. Interfacial properties between ultra-high performance concrete (UHPC) and steel: from static performance to fatigue behavior[J]. Engineering Structures, 2022, 273: 115145.
    [45]
    王春生, 段兰, 王茜, 等. 长寿命钢桥结构体系、设计理论与制造技术探索[M]//陈艾荣, 阮欣. 桥梁维护、安全与运营管理——长寿命与智能化. 北京: 人民交通出版社, 2021: 257-304.

    WANG Chun-sheng, DUAN Lan, WANG Qian, et al. Research on structure system, design theory and manufacturing technology of long-life steel bridge[M]//CHEN Ai-rong, RUAN Xin. Bridge Maintenance, Safety and Management: Long Life and Intelligentize. Beijing: China Communications Press, 2021: 257-304. (in Chinese)
    [46]
    HOUANKPO T O N. Structural behavior and design criteria of UHPFRC and steel composite bridge decks[D]. Xi'an: Chang'an University, 2022.
    [47]
    段兰, 王春生, 王茜, 等. 基于粘结波折件的钢纤维混凝土组合钢桥面板: 中国, 201710621404.6[P]. 2023-04-11.

    DUAN Lan, WANG Chun-sheng, WANG Qian, et al. Steel fiber reinforced concrete composited steel bridge decks utilizing bonded corrugated shear connectors: China, 201710621404.6[P]. 2023-04-11. (in Chinese)
    [48]
    段兰, 王春生, 王茜, 等. 基于粘结栓钉群的钢纤维混凝土组合钢桥面板: 中国, 201710621402.7[P]. 2020-02-14.

    DUAN Lan, WANG Chun-sheng, WANG Qian, et al. Steel fiber reinforced concrete composite steel bridge deck utilizing bonded stub group: China, 201710621402.7[P]. 2020-02-14. (in Chinese)
    [49]
    ZOU Yang, JIANG Jin-long, YANG Jun, et al. Enhancing the toughness of bonding interface in steel-UHPC composite structure through fiber bridging[J]. Cement and Concrete Composites, 2023, 137: 104947.
    [50]
    JIANG Jin-long, LENG Jing-cheng, ZHANG Jiang-tao, et al. Interfacial behavior of the steel-UHPC composite deck with toughened epoxy bonding[J]. Frontiers in Materials, 2022, 9: 859214.
    [51]
    李萌, 邵旭东, 曹君辉, 等. UHPC加固重度开裂钢桥面界面抗剪静力试验研究[J]. 公路交通科技, 2021, 38(12): 73-80. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202112009.htm

    LI Meng, SHAO Xu-dong, CAO Jun-hui, et al. Experiment study on interface static shear performance when severely cracked steel bridge decks are reinforced by UHPC[J]. Journal of Highway and Transportation Research and Development, 2021, 38(12): 73-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202112009.htm
    [52]
    王洋, 邵旭东, 陈杰, 等. 重度疲劳开裂钢桥桥面的UHPC加固技术[J]. 土木工程学报, 2020, 53(11): 92-101, 115. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202011010.htm

    WANG Yang, SHAO Xu-dong, CHEN Jie, et al. UHPC-based strengthening technique for significant fatigue cracking steel bridge decks[J]. China Civil Engineering Journal, 2020, 53(11): 92-101, 115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202011010.htm
    [53]
    DE CORTER W. Renovation techniques for rib to deckplate fatigue cracking in orthotropic bridge decks[J]. Scientific Research and Essays, 2011, 6(9): 1977-1986.
    [54]
    MA C H, DENG Peng-ru, MATSUMOTO T. Fatigue analysis of a UHPFRC-OSD composite structure considering crack bridging and interfacial bond stiffness degradations[J]. Engineering Structures, 2021, 249: 113330.
    [55]
    HOUANKPO T O N, DUAN Lan, WANG Chun-sheng. Structural performance analysis for UHPFRC-OSD composite bridge deck with cold connectors[M]//CHEN Ai-rong, RUAN Xin, FRANGOPOL D M. Life-cycle Civil Engineering: Innovation, Theory and Practice. Boca Raton: CRC Press, 2021: 1288-1296.
    [56]
    BARENBLATT G I. The mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics, 1962, 7: 55-129.
    [57]
    NEEDLEMAN A. A continuum model for void nucleation by inclusion debonding[J]. Journal of Applied Mechanics, 1987, 54(3): 525-531.
    [58]
    XU X P, NEEDLEMAN A. Numerical simulations of fast crack growth in brittle solids[J]. Journal of the Mechanics and Physics of Solids, 1994, 42(9): 1397-1434.
    [59]
    NEEDLEMAN A. An analysis of intersonic crack growth under shear loading[J]. Journal of Applied Mechanics, 1999, 66(4): 847-857.
    [60]
    CAMANHO P P, DÁVILA C G, AMBUR D R. Numerical simulation of delamination growth in composite materials[R]. Washington DC: NASA, 2001.
    [61]
    CAMANHO P P, DÁVILA C G. Mixed-mode decohesion finite elements for the simulation of delamination in composite materials[R]. Washington DC: NASA, 2002.
    [62]
    DIENG L, MARCHAND P, GOMES F, et al. Use of UHPFRC overlay to reduce stresses in orthotropic steel decks[J]. Journal of Constructional Steel Research, 2013, 89: 30-41.
    [63]
    SHAO Xu-dong, CAO Jun-hui. Fatigue assessment of steel-UHPC lightweight composite deck based on multiscale FE analysis: case study[J]. Journal of Bridge Engineering, 2018, 23(1): 05017015.
    [64]
    赵秋, 蔡文平, 陈宝春. 基于平钢板连接件的钢-RPC组合桥面板抗剪试验研究[J]. 工程力学, 2017, 34(8): 171-179. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201708019.htm

    ZHAO Qiu, CAI Wen-ping, CHEN Bao-chun. Shear-test research on smooth-plate shear-force connector of steel and RPC composite deck[J]. Engineering Mechanics, 2017, 34(8): 171-179. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201708019.htm
    [65]
    CHEN Shi-ming, HUANG Yang, GU Ping, et al. Experimental study on fatigue performance of UHPC-orthotropic steel composite deck[J]. Thin-Walled Structures, 2019, 142: 1-18.
    [66]
    QIN Shi-qiang, ZHANG Jia-bin, HUANG Chun-lei, et al. Fatigue performance evaluation of steel-UHPC composite orthotropic deck in a long-span cable-stayed bridge under in-service traffic[J]. Engineering Structures, 2022, 254: 113875.
    [67]
    UNTERWEGER H, NOVAK F. Strengthening of orthotropic steel decks using UHPC: UHPC-concrete instead of asphalt layer for additional at least 50 years in service[C]//EUROSTEEL. The Online Collection for Conference Papers in Civil Engineering. Copenhagen: EUROSTEEL, 2017: 4502-4511.
    [68]
    DUAN Lan, HOUANKPO T O N, WANG Chun-sheng, et al. Orthotropic steel bridge deck study with UHPFRC cold composite overlay[M]//POWERS E, FRANGOPOL D M, AL-MAHAIDI R, et al. Maintenance, Safety, Risk, Management and Life-cycle Performance of Bridges. Boca Raton: CRC Press, 2018: 1319-1326.
    [69]
    王春生, 段兰, 王茜, 等. 基于粘结钢纤维混凝土的组合钢桥面板及其铺筑方法: 中国, 201710625907.0[P]. 2019-10-11.

    WANG Chun-sheng, DUAN Lan, WANG Qian, et al. Steel fiber reinforced concrete composite steel bridge deck utilizing epoxy bonded method and its construction techniques: China, 201710625907.0[P]. 2019-10-11. (in Chinese)
    [70]
    王春生, 张洋, 李璞玉. 钢箱梁冷连接组合钢桥面板受力性能监测与评价[R]. 西安: 长安大学, 2023.

    WANG Chun-sheng, ZHANG Yang, LI Pu-yu. Monitoring and evaluation of mechanical performance of steel box girders with cold composited steel bridge decks[R]. Xi'an: Chang'an University, 2023. (in Chinese)
    [71]
    MURAKOSHI J, YANADORI N, ISHⅡ H. Research on steel fiber reinforced concrete pavement for orthotropic steel deck as a countermeasure for fatigue[C]//ASCE. Proceeding of the 2nd International Orthotropic Bridge Conference. Reston: ASCE, 2008: 359-371.
    [72]
    田启贤, 高立强, 周尚猛. 超高性能混凝土-钢正交异性板组合桥面受力性能研究[J]. 桥梁建设, 2017, 47(3): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS2019S1003.htm

    TIAN Qi-xian, GAO Li-qiang, ZHOU Shang-meng. Study of mechanical behavior of composite bridge deck with ultra high performance concrete and orthotropic steel plate[J]. Bridge Construction, 2017, 47(3): 13-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QLJS2019S1003.htm
    [73]
    曹君辉, 杨碧川, 邵旭东, 等. UHPC加固在役大跨径悬索桥钢桥面: 实桥试验与理论分析[J]. 湖南大学学报(自然科学版), 2023, 50(9): 32-45. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202309021.htm

    CHAO Jun-hui, YANG Bi-chuan, SHAO Xu-dong, et al. In-site test and theoretical analysis of innovative UHPC strengthening structure on steel deck of an in-service long-span suspension bridge[J]. Journal of Hunan University (Natural Sciences), 2023, 50(9): 32-45. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202309021.htm
    [74]
    秦世强, 黄春雷, 张佳斌, 等. 基于应力监测的钢-UHPC组合桥面和环氧沥青钢桥面疲劳性能对比[J]. 东南大学学报(自然科学版), 2021, 51(1): 61-70. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202101009.htm

    QIN Shi-qiang, HUANG Chun-lei, ZHANG Jia-bin, et al. Comparison of fatigue performance between steel-UHPC composite deck and epoxy asphalt steel deck based on stress monitoring[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(1): 61-70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202101009.htm
    [75]
    黄政宇, 李旦. 不锈钢纤维对超高性能混凝土的性能影响研究[J]. 铁道科学与工程学报, 2019, 16(2): 376-383. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201902013.htm

    HUANG Zheng-yu, LI Dan. Study on the effect of stainless steel fiber on the performance of ultra-high performance concrete[J]. Journal of Railway Science and Engineering, 2019, 16(2): 376-383. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD201902013.htm
    [76]
    MENG Wei-na, KHAYAT K. Effects of saturated lightweight sand content on key characteristics of ultra-high-performance concrete[J]. Cement and Concrete Research, 2017, 101: 46-54.
    [77]
    王俊颜, 刘菲凡, 郭君渊. 超高性能轻质混凝土的循环拉伸力学性能[J]. 哈尔滨工业大学学报, 2021, 53(4): 170-176. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202104019.htm

    WANG Jun-yan, LIU Fei-fan, GUO Jun-yuan. Cyclic tensile behavior of ultra-high performance lightweight concrete[J]. Journal of Harbin Institute of Technology, 2021, 53(4): 170-176. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202104019.htm
    [78]
    张清华, 程震宇, 邓鹏昊, 等. 新型钢-UHPC组合桥面板抗弯承载力模型试验与理论分析方法[J]. 土木工程学报, 2022, 55(3): 47-64. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202203006.htm

    ZHANG Qing-hua, CHENG Zhen-yu, DENG Peng-hao, et al. Experimental study and theoretical method on flexural capacity of innovative steel-UHPC composite bridge decks[J]. China Civil Engineering Journal, 2022, 55(3): 47-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202203006.htm
    [79]
    王春生, 李璞玉, 许璐巍. 基于疲劳数字孪生的大跨度桥梁钢桥面板运维技术研究[R]. 西安: 长安大学, 2023.

    WANG Chun-sheng, LI Pu-yu, XU Lu-wei. Research on maintenance technology for steel bridge decks in large span bridges based on digital fatigue simulation[R]. Xi'an: Chang'an University, 2023. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (514) PDF downloads(102) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return