Citation: | WU Dan, DING Wang-cai. Review on wear mechanism and influence of wheel polygon of rail transit train[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 85-101. doi: 10.19818/j.cnki.1671-1637.2024.02.005 |
[1] |
敬霖, 刘凯. 车轮踏面缺陷引起的轮轨动态响应综述[J]. 交通运输工程学报, 2021, 21(1): 285-315. doi: 10.19818/j.cnki.1671-1637.2021.01.014
JING Lin, LIU Kai. Review on wheel-rail dynamic responses caused by wheel tread defects[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 285-315. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.01.014
|
[2] |
KAPER H P. Wheel corrugation on Netherlands railways(NS): origin and effects of "polygonization" in particular[J]. Journal of Sound and Vibration, 1988, 120 (2): 267-274. doi: 10.1016/0022-460X(88)90434-8
|
[3] |
KALOUSEK J, JOHNSON K L. An investigation of short pitch wheel and rail corrugations on the Vancouver mass transit system[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 1992, 206(2): 127-135. doi: 10.1243/PIME_PROC_1992_206_226_02
|
[4] |
MORYS B. Enlargement of out-of-round wheel profiles on high speed trains[J]. Journal of Sound and Vibration, 1999, 227(5): 965-978. doi: 10.1006/jsvi.1999.2055
|
[5] |
DEKKER H. Vibrational resonances of nonrigid vehicles: polygonization and ripple patterns[J]. Applied Mathematical Modelling, 2009, 33(3): 1349-1355. doi: 10.1016/j.apm.2008.01.025
|
[6] |
JOHANSSON A, ANDERSSON C. Out-of-round railway wheels—a study of wheel polygonalization through simulation of three-dimensional wheel-rail interaction and wear[J]. Vehicle System Dynamics, 2005, 43(8): 539-559. doi: 10.1080/00423110500184649
|
[7] |
JOHANSSON A. Out-of-round railway wheels—assessment of wheel tread irregularities in train traffic[J]. Journal of Sound and Vibration, 2006, 293(3/4/5): 795-806.
|
[8] |
NIELSEN J C O, JOHANSSON A. Out-of-round railway wheels-a literature survey[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2000, 214(2): 79-91. doi: 10.1243/0954409001531351
|
[9] |
KANG M H, CHOI B W, KOH K C, et al. Experimental study of a vehicle detector with an AMR sensor[J]. Sensors and Actuators A: Physical, 2005, 118(2): 278-284. doi: 10.1016/j.sna.2004.09.002
|
[10] |
BARKE D W, CHIU W K. A review of the effects of out-of-round wheels on track and vehicle components[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2005, 219(3): 151-175. doi: 10.1243/095440905X8853
|
[11] |
金学松, 吴越, 梁树林, 等. 车轮非圆化磨耗问题研究进展[J]. 西南交通大学学报, 2018, 53(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201801001.htm
JIN Xue-song, WU Yue, LIANG Shu-lin, et al. Mechanisms and countermeasures of out-of-roundness wear on railway vehicle wheels[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201801001.htm
|
[12] |
金学松, 吴越, 梁树林, 等. 高速列车车轮多边形磨耗、机理、影响和对策分析[J]. 机械工程学报, 2020, 56(16): 118-136. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202016014.htm
JIN Xue-song, WU Yue, LIANG Shu-lin, et al. Characteristics, mechanism, influences and countermeasures of polygonal wear of high-speed train wheels[J]. Journal of Mechanical Engineering, 2020, 56(16): 118-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202016014.htm
|
[13] |
李彦夫, 门天立. 列车车轮多边形磨损及其噪音研究综述[J]. 振动、测试与诊断, 2019, 39(6): 1143-1152, 1355. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201906005.htm
LI Yan-fu, MEN Tian-li. An overview of polygonal wear and generated noise of train wheels[J]. Journal of Vibration, Measurement and Diagnosis, 2019, 39(6): 1143-1152, 1355. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS201906005.htm
|
[14] |
朱海燕, 胡华涛, 尹必超, 等. 轨道车辆车轮多边形研究进展[J]. 交通运输工程学报, 2020, 20(1): 102-119. doi: 10.19818/j.cnki.1671-1637.2020.01.008
ZHU Hai-yan, HU Hua-tao, YIN Bi-chao, et al. Research progress on wheel polygons of rail vehicles[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 102-119. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2020.01.008
|
[15] |
陶功权, 温泽峰, 金学松. 铁道车辆车轮非圆化磨耗形成机理及控制措施研究进展[J]. 机械工程学报, 2021, 57(6): 106-120. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202106011.htm
TAO Gong-quan, WEN Ze-feng, JIN Xue-song. Advances in formation mechanism and mitigation measures of out-of-round railway vehicle wheels[J]. Journal of Mechanical Engineering, 2021, 57(6): 106-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202106011.htm
|
[16] |
TAO Gong-quan, WEN Ze-feng, JIN Xue-song, et al. Polygonisation of railway wheels: a critical review[J]. Railway Engineering Science, 2020, 28(4): 317-345. doi: 10.1007/s40534-020-00222-x
|
[17] |
STAŚKIEWICZ T, FIRLIK B. Out-of-round tram wheels-current state and measurements[J]. Archives of Transport, 2018, 45(1): 93-103.
|
[18] |
丁军君, 杨九河, 胡静涛, 等. 高速列车车轮多边形磨耗演变行为[J]. 机械工程学报, 2020, 56(22): 184-189. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202022021.htm
DING Jun-jun, YANG Jiu-he, HU Jing-tao, et al. Evolution of the polygonal wear of high-speed train wheels[J]. Journal of Mechanical Engineering, 2020, 56(22): 184-189. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202022021.htm
|
[19] |
CUI Da-bin, AN Bo-yang, ALLEN P, et al. Effect of the turning characteristics of underfloor wheel lathes on the evolution of wheel polygonisation[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2019, 233(5): 479-488. doi: 10.1177/0954409718795760
|
[20] |
崔大宾, 梁树林, 宋春元, 等. 高速车轮非圆化现象及其对轮轨行为的影响[J]. 机械工程学报, 2013, 49(18): 8-16. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201318002.htm
CUI Da-bin, LIANG Shu-lin, SONG Chun-yuan, et al. Out of round high-speed wheel and its influence on wheel/rail behavior[J]. Journal of Mechanical Engineering, 2013, 49(18): 8-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201318002.htm
|
[21] |
任德祥, 陶功权, 刘欢, 等. 机车多边形磨耗车轮镟修异常原因分析及改进措施[J]. 中南大学学报(自然科学版), 2019, 50(9): 2317-2326. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201909029.htm
REN De-xiang, TAO Gong-quan, LIU Huan, et al. Analysis of abnormal turning repair for locomotive wheels with polygonal wear and improvement measures[J]. Journal of Central South University (Science and Technology), 2019, 50(9): 2317-2326. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201909029.htm
|
[22] |
苏建, 李立, 崔大宾. 不落轮旋修工艺对初始车轮多边形的影响研究[J]. 铁道学报, 2017, 39(5): 57-61. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201705008.htm
SU Jian, LI Li, CUI Da-bin. Study on influence of turning repair operations on wheels with initial polygonal state[J]. Journal of the China Railway Society, 2017, 39(5): 57-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201705008.htm
|
[23] |
NIELSEN J C O, LUNDÉN R, JOHANSSON A, et al. Train-track interaction and mechanisms of irregular wear on wheel and rail surfaces[J]. Vehicle System Dynamics, 2003, 40(1/2/3): 3-54.
|
[24] |
陈光雄, 金学松, 邬平波, 等. 车轮多边形磨耗机理的有限元研究[J]. 铁道学报, 2011, 33(1): 14-18. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201101006.htm
CHEN Guang-xiong, JIN Xue-song, WU Ping-bo, et al. Finite element study on the generation mechanism of polygonal wear of railway wheels[J]. Journal of the China Railway Society, 2011, 33(1): 14-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201101006.htm
|
[25] |
陈光雄, 崔晓璐, 王科. 高速列车车轮踏面非圆磨耗机理[J]. 西南交通大学学报, 2016, 51(2): 244-250. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201602005.htm
CHEN Guang-xiong, CUI Xiao-lu, WANG Ke. Generation mechanism for plolygonalization of wheel treads of high-speed trains[J]. Journal of Southwest Jiaotong University, 2016, 51(2): 244-250. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201602005.htm
|
[26] |
赵晓男, 陈光雄, 康熙, 等. 兰新客运专线动车组车轮多边形磨耗的机理[J]. 西南交通大学学报, 2020, 55(2): 364-371. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202002017.htm
ZHAO Xiao-nan, CHEN Guang-xiong, KANG Xi, et al. Mechanism of polygonal wear on wheels of electric multiple units on Lanzhou-Xinjiang passenger Dedicated Line[J]. Journal of Southwest Jiaotong University, 2020, 55(2): 364-371. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202002017.htm
|
[27] |
黄彩虹, 曾京, 魏来. 铁道车辆蛇行稳定性主动控制综述[J]. 交通运输工程学报, 2021, 21(1): 267-284. doi: 10.19818/j.cnki.1671-1637.2021.01.013
HUANG Cai-hong, ZENG Jing, WEI Lai. Review on active control of hunting stability for railway vehicles[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 267-284. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.01.013
|
[28] |
KURZECK B, HECHT M. Dynamic simulation of friction-induced vibrations in a light railway bogie while curving compared with measurement results[J]. Vehicle System Dynamics, 2010, 48(S1): 121-138.
|
[29] |
ZHAO X N, CHEN G X, LYU J Z, et al. Study on the mechanism for the wheel polygonal wear of high-speed trains in terms of the frictional self-excited vibration theory[J]. Wear, 2019, 426/427: 1820-1827. doi: 10.1016/j.wear.2019.01.020
|
[30] |
吴丹, 丁旺才. 含干摩擦碰撞系统的簇发振荡及稳定性分析[J]. 华中科技大学学报(自然科学版), 2020, 48(3): 46-51. https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG202003009.htm
WU Dan, DING Wang-cai. Bursting oscillations and stability analysis of dry friction-impact vibration system[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2020, 48(3): 46-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG202003009.htm
|
[31] |
JENKINS H H, STEPHENSON J E, CLAYTON G A, et al. The effect of track and vehicle parameters on wheel/rail vertical dynamic forces[J]. Railway Engineering Journal, 1974, 3(1): 2-16.
|
[32] |
RADFORD R W. Wheel/rail vertical forces in high-speed railway operation[J]. Journal of Engineering for Industry, 1977, 99(4): 849-858. doi: 10.1115/1.3439361
|
[33] |
关庆华, 周业明, 李伟, 等. 车辆轨道系统的P2共振频率研究[J]. 机械工程学报, 2019, 55(8): 118-127. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201908017.htm
GUAN Qing-hua, ZHOU Ye-ming, LI Wei, et al. Study on the P2 resonance frequency of vehicle track system[J]. Journal of Mechanical Engineering, 2019, 55(8): 118-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201908017.htm
|
[34] |
TAO Gong-quan, WEN Ze-feng, LIANG Xi-ren, et al. An investigation into the mechanism of the out-of-round wheels of metro train and its mitigation measures[J]. Vehicle System Dynamics, 2019, 57(1): 1-16. doi: 10.1080/00423114.2018.1445269
|
[35] |
刘丙林, 李忠山, 陈磊, 等. 地铁车辆轮对不圆度规律及成因分析[J]. 现代城市轨道交通, 2019(7): 22-29. https://www.cnki.com.cn/Article/CJFDTOTAL-XDGD201907006.htm
LIU Bing-lin, LI Zhong-shan, CHEN Lei, et al. Analysis on the wheel roundness of metro vehicle and causes of its irregularities[J]. Modern Urban Transit, 2019(7): 22-29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDGD201907006.htm
|
[36] |
GRASSIE S L. Rail corrugation: characteristics, causes, and treatments[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2009, 223(6): 581-596. doi: 10.1243/09544097JRRT264
|
[37] |
JIN Xue-song, WU Lei, FANG Jian-ying, et al. An investigation into the mechanism of the polygonal wear of metro train wheels and its effect on the dynamic behaviour of a wheel/rail system[J]. Vehicle System Dynamics, 2012, 50(12): 1817-1834. doi: 10.1080/00423114.2012.695022
|
[38] |
李伟, 李言义, 张雄飞, 等. 地铁车辆车轮多边形的机理分析[J]. 机械工程学报, 2013, 49(18): 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201318003.htm
LI Wei, LI Yan-yi, ZHANG Xiong-fei, et al. Mechanism of the polygonal wear of metro train wheels[J]. Journal of Mechanical Engineering, 2013, 49(18): 17-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201318003.htm
|
[39] |
TAO Gong-quan, WANG Lin-feng, WEN Ze-feng, et al. Experimental investigation into the mechanism of the polygonal wear of electric locomotive wheels[J]. Vehicle System Dynamics, 2018, 56(6): 883-899. doi: 10.1080/00423114.2017.1399210
|
[40] |
刘欢, 陶功权, 蔡晶, 等. 车轮多边形态下机车轮轨动态响应研究[J]. 振动与冲击, 2020, 39(16): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202016003.htm
LIU Huan, TAO Gong-quan, CAI Jing, et al. Influence of wheel polygon on locomotive wheel-rail dynamic response[J]. Journal of Vibration and Shock, 2020, 39(16): 16-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202016003.htm
|
[41] |
FRÖHLING R, SPANGENBERG U, REITMANN E. Root cause analysis of locomotive wheel tread polygonisation[J]. Wear, 2019, 432/433: 102911. doi: 10.1016/j.wear.2019.05.026
|
[42] |
SPANGENBERG U. Variable frequency drive harmonics and interharmonics exciting axle torsional vibration resulting in railway wheel polygonisation[J]. Vehicle System Dynamics, 2020, 58(3): 404-424. doi: 10.1080/00423114.2019.1581235
|
[43] |
吴丹, 丁旺才, 郭富强, 等. 车轮谐波磨耗对轮轨蠕滑特性的影响分析[J]. 振动与冲击, 2021, 40(4): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202104001.htm
WU Dan, DING Wang-cai, GUO Fu-qiang, et al. Effects of harmonic wear of wheels on creep characteristics of a wheel-rail system[J]. Journal of Vibration and Shock, 2021, 40(4): 1-9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202104001.htm
|
[44] |
胡晓依, 任海星, 成棣, 等. 动车组车轮多边形磨耗形成与发展过程仿真研究[J]. 中国铁道科学, 2021, 42(2): 107-115. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202102012.htm
HU Xiao-yi, REN Hai-xing, CHENG Di, et al. Numerical simulation on the formation and development of polygonal wear of EMU wheels[J]. China Railway Science, 2021, 42(2): 107-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202102012.htm
|
[45] |
吴越, 韩健, 左齐宇, 等. 钢轨波磨对高速列车车轮多边形磨耗产生与发展的影响[J]. 机械工程学报, 2020, 56(17): 198-208. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202017021.htm
WU Yue, HAN Jian, ZUO Qi-yu, et al. Effect of rail corrugation on initiation and development of polygonal wear on high-speed train wheels[J]. Journal of Mechanical Engineering, 2020, 56(17): 198-208. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB202017021.htm
|
[46] |
高阳, 于子良, 齐洪峰, 等. 轮对声振特性及多边形发展与轮辋厚度相关性研究[J]. 噪声与振动控制, 2020, 40(4): 132-136, 160. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK202004025.htm
GAO Yang, YU Zi-liang, QI Hong-feng, et al. The correlation study between rim thickness and vib-acoustic characteristics and polygon development of wheelset[J]. Noise and Vibration Control, 2020, 40(4): 132-136, 160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK202004025.htm
|
[47] |
赵新利, 吴越, 郭涛, 等. 车轮多边形磨耗统计规律及关键影响因素分析[J]. 振动、测试与诊断, 2020, 40(1): 48-53, 202. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS202001008.htm
ZHAO Xin-li, WU Yue, GUO Tao, et al. The statistical research and induction factor of polygonal wear of high-speed train wheels[J]. Journal of Vibration, Measurement and Diagnosis, 2020, 40(1): 48-53, 202. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCS202001008.htm
|
[48] |
吴越, 韩健, 刘佳, 等. 高速列车车轮多边形磨耗对轮轨力和转向架振动行为的影响[J]. 机械工程学报, 2018, 54(4): 37-46. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804006.htm
WU Yue, HAN Jian, LIU Jia, et al. Effect of high-speed train polygonal wheels on wheel/rail contact force and bogie vibration[J]. Journal of Mechanical Engineering, 2018, 54(4): 37-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201804006.htm
|
[49] |
马卫华, 罗世辉, 宋荣荣. 地铁车辆车轮多边形化形成原因分析[J]. 机械工程学报, 2012, 48(24): 106-111. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201224019.htm
MA Wei-hua, LUO Shi-hui, SONG Rong-rong. Analyses of the form reason of wheel polygonization of subway vehicle[J]. Journal of Mechanical Engineering, 2012, 48(24): 106-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201224019.htm
|
[50] |
高阳, 于子良, 齐洪峰, 等. 西北复杂运行条件下车轮多边形发展规律研究[J]. 噪声与振动控制, 2020, 40(3): 118-124. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK202003022.htm
GAO Yang, YU Zi-liang, QI Hong-feng, et al. Study on the development regulation of wheel polygon under the complex running conditions in Northwest China[J]. Noise and Vibration Control, 2020, 40(3): 118-124. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK202003022.htm
|
[51] |
吴丹, 丁旺才, 商跃进, 等. 考虑车轮谐波磨耗的动车组车轴疲劳寿命[J]. 中国铁道科学, 2020, 41(3): 111-119. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202003013.htm
WU Dan, DING Wang-cai, SHANG Yue-jin, et al. Fatigue life of EMU axle considering harmonic wear of wheel[J]. China Railway Science, 2020, 41(3): 111-119. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202003013.htm
|
[52] |
张志波, 梁海啸, 侯茂锐, 等. 镟修工艺对动车组车轮多边形磨耗产生和发展的影响[J]. 中国铁路, 2021(1): 32-38. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG202101005.htm
ZHANG Zhi-bo, LIANG Hai-xiao, HOU Mao-rui, et al. Influence of reprofiling process on the generation and development of wheel polygon wear of EMUs[J]. China Railway, 2021(1): 32-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG202101005.htm
|
[53] |
乔青峰, 李明星, 赵晓男, 等. 研磨子抑制高速列车车轮多边形磨耗的机理研究[J]. 摩擦学学报, 2020, 40(2): 234-239. https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX202002012.htm
QIAO Qing-feng, LI Ming-xing, ZHAO Xiao-nan, et al. Mechanism of suppression of polygonal wear of wheel on high-speed trains by abrasive block[J]. Tribology, 2020, 40(2): 234-239. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MCXX202002012.htm
|
[54] |
伍安旭, 冯畅, 吴波, 等. 基于研磨子的车轮多边形抑制机理与跟踪试验[J]. 城市轨道交通研究, 2019, 22(5): 143-146. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201905040.htm
WU An-xu, FENG Chang, WU Bo, et al. Suppression mechanism of wheel polygon and tracing test based on abrasive block[J]. Urban Mass Transit, 2019, 22(5): 143-146. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201905040.htm
|
[55] |
常崇义, 李果, 张银花, 等. 轮轨材料硬度匹配对车轮多边形磨耗影响的试验研究[J]. 中国铁道科学, 2018, 39(2): 87-93. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201802012.htm
CHANG Chong-yi, LI Guo, ZHANG Yin-hua, et al. Experimental study on influence of wheel-rail material hardness matching on wheel polygonal wear[J]. China Railway Science, 2018, 39(2): 87-93. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201802012.htm
|
[56] |
沈文林, 宋春元, 李国栋, 等. 高速动车组车轮硬度与车轮多边形形成关系及解决措施研究[J]. 铁道机车车辆, 2018, 38(4): 18-23. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201804007.htm
SHEN Wen-lin, SONG Chun-yuan, LI Guo-dong, et al. Research for high-speed EMU wheel hardness and polygon-form relationships with solutions[J]. Railway Locomotive and Car, 2018, 38(4): 18-23. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201804007.htm
|
[57] |
赵晓男, 陈光雄, 崔晓璐, 等. 高速列车车轮多边形磨耗的形成机理及影响因素探究[J]. 表面技术, 2018, 47(8): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201808002.htm
ZHAO Xiao-nan, CHEN Guang-xiong, CUI Xiao-lu, et al. Formation mechanism and influencing factors of the polygonal wear of high-speed train wheels[J]. Surface Technology, 2018, 47(8): 8-13. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BMJS201808002.htm
|
[58] |
WU Xing-wen, RAKHEJA S, CAI Wu-bin, et al. A study of formation of high order wheel polygonalization[J]. Wear, 2019, 424/425: 1-14. doi: 10.1016/j.wear.2019.01.099
|
[59] |
WU Yue, DU Xing, ZHANG He-ji, et al. Experimental analysis of the mechanism of high-order polygonal wear of wheels of a high-speed train[J]. Journal of Zhejiang University: Science A, 2017, 18(8): 579-592. doi: 10.1631/jzus.A1600741
|
[60] |
王宏谋. 某型动车组制动盘异常振动分析及缓解措施研究[J]. 铁道机车车辆, 2019, 39(4): 52-54, 72. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201904013.htm
WANG Hong-mou. Analysis and study on abnormal vibration of braking disc of EMU[J]. Railway Locomotive and Car, 2019, 39(4): 52-54, 72. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJC201904013.htm
|
[61] |
刘韦, 马卫华, 罗世辉, 等. 考虑轮对弹性的车轮振动及车轮多边形化对轮轨力影响研究[J]. 铁道学报, 2013, 35(6): 28-34. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201306006.htm
LIU Wei, MA Wei-hua, LUO Shi-hui, et al. Research on influence of wheel vibration and wheel polygonization on wheel-rail force in consideration of wheelset elasticity[J]. Journal of the China Railway Society, 2013, 35(6): 28-34. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201306006.htm
|
[62] |
HUNG C F, HSU W L. Influence of long-wave length track irregularities on the motion of a high-speed train[J]. Vehicle System Dynamics, 2018, 56(1): 95-112. doi: 10.1080/00423114.2017.1346261
|
[63] |
KNOTHE K. Gleisdynamik[J]. Stahlbau, 2001, 70(9): 733-734.
|
[64] |
CLARK R A, DEAN P A, ELKINS J A, et al. An investigation into the dynamic effects of railway vehicles running on corrugated rails[J]. Journal of Mechanical Engineering Science, 1982, 24(2): 65-76. doi: 10.1243/JMES_JOUR_1982_024_015_02
|
[65] |
翟婉明. 车辆-轨道耦合动力学[M]. 北京: 科学出版社, 2015.
ZHAI Wan-ming. Vehicle-Track Coupling Dynamics[M]. Beijing: Science Press, 2015. (in Chinese)
|
[66] |
BAEZA L, FAYOS J, RODA A, et al. High frequency railway vehicle-track dynamics through flexible rotating wheelsets[J]. Vehicle System Dynamics, 2008, 46(7): 647-659. doi: 10.1080/00423110701656148
|
[67] |
ZHANG Tao, CHEN Zai-gang, ZHAI Wan-ming, et al. Establishment and validation of a locomotive-track coupled spatial dynamics model considering dynamic effect of gear transmissions[J]. Mechanical Systems and Signal Processing, 2019, 119: 328-345. doi: 10.1016/j.ymssp.2018.09.032
|
[68] |
LING Liang, ZHANG Qing, XIAO Xin-biao, et al. Integration of car-body flexibility into train-track coupling system dynamics analysis[J]. Vehicle System Dynamics, 2018, 56(4): 485-505. doi: 10.1080/00423114.2017.1391397
|
[69] |
HAN Jian, ZHONG Shuo-qiao, XIAO Xin-biao, et al. High-speed wheel/rail contact determining method with rotating flexible wheelset and validation under wheel polygon excitation[J]. Vehicle System Dynamics, 2018, 56(8): 1233-1249. doi: 10.1080/00423114.2017.1408920
|
[70] |
ZHAI Wan-ming. Vehicle-Track Coupled Dynamics Models[M]. Berlin: Springer, 2020.
|
[71] |
LIU Peng-fei, ZHAI Wan-ming, WANG Kai-yun. Establishment and verification of three-dimensional dynamic model for heavy-haul train-track coupled system[J]. Vehicle System Dynamics, 2016, 54(11): 1511-1537. doi: 10.1080/00423114.2016.1213862
|
[72] |
ZHAI Wan-ming, XIA He, CAI Cheng-biao, et al. High-speed train-track-bridge dynamic interactions—Part Ⅰ: theoretical model and numerical simulation[J]. International Journal of Rail Transportation, 2013, 1(1/2): 3-24.
|
[73] |
XU Lei, ZHAI Wan-ming. Vehicle-track-tunnel dynamic interaction: a finite/infinite element modelling method[J]. Railway Engineering Science, 2021, 29(2): 109-126. doi: 10.1007/s40534-021-00238-x
|
[74] |
LIU Xiao-yuan, ZHAI Wan-ming. Analysis of vertical dynamic wheel/rail interaction caused by polygonal wheels on high-speed trains[J]. Wear, 2014, 314(1/2): 282-290.
|
[75] |
陈美, 翟婉明, 閤鑫, 等. 高速铁路多边形车轮通过钢轨焊接区的轮轨动力特性分析[J]. 科学通报, 2019, 64(25): 2573-2582. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201925004.htm
CHEN Mei, ZHAI Wan-ming, GE Xin, et al. Analysis of wheel-rail dynamic characteristics due to polygonal wheel passing through rail weld zone in high-speed railways[J]. Chinese Science Bulletin, 2019, 64(25): 2573-2582. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201925004.htm
|
[76] |
SONG Ying, ZHANG Xue-mei, SUN Bao-chen. Influence of polygonal wear on dynamic performance of wheels on high-speed trains[J]. Tehni Ač ki Vjesnik: Technical Gazette, 2021, 28(1): 27-33.
|
[77] |
尹振坤, 吴越, 韩健. 高速列车车轮多边形磨耗对轮轨垂向力的影响[J]. 铁道学报, 2017, 39(10): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201710004.htm
YIN Zhen-kun, WU Yue, HAN Jian. Effect of polygonal wear of high-speed train wheels on vertical force between wheel and rail[J]. Journal of the China Railway Society, 2017, 39(10): 26-32. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201710004.htm
|
[78] |
干锋, 戴焕云, 宋春元, 等. 车轮高阶不圆对轮对蛇行运动和等效锥度的影响[J]. 铁道学报, 2020, 42(7): 57-64. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202007009.htm
GAN Feng, DAI Huan-yun, SONG Chun-yuan, et al. Effect of out-of-round wheel on hunting movement and equivalent conicity of wheelset[J]. Journal of the China Railway Society, 2020, 42(7): 57-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202007009.htm
|
[79] |
彭来先, 韩健, 初东博, 等. 高速动车组垂向止挡异常振动特性及成因分析[J]. 机械工程学报, 2019, 55(12): 121-127. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201912014.htm
PENG Lai-xian, HAN Jian, CHU Dong-bo, et al. Analysis of abnormal vibration characteristics and causes of vertical block in high-speed EMU[J]. Journal of Mechanical Engineering, 2019, 55(12): 121-127. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201912014.htm
|
[80] |
杨润芝, 曾京. 高阶车轮多边形对轮轨系统振动影响分析[J]. 振动与冲击, 2020, 39(21): 101-110. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202021015.htm
YANG Run-zhi, ZENG Jing. Influences of higher order wheel polygon on vibration of wheel-rail system[J]. Journal of Vibration and Shock, 2020, 39(21): 101-110. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202021015.htm
|
[81] |
WU Xing-wen, RAKHEJA S, QU Sheng, et al. Dynamic responses of a high-speed railway car due to wheel polygonalisation[J]. Vehicle System Dynamics, 2018, 56(12): 1817-1837.
|
[82] |
吴丹, 丁旺才, 王鹏. 考虑轮轨周期性磨耗因素的滚动接触动态特性研究[J]. 中南大学学报(自然科学版), 2021, 52(4): 1389-1398. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202104035.htm
WU Dan, DING Wang-cai, WANG Peng. Research on dynamic characteristics of rolling contact considering wheel-rail periodic wear[J]. Journal of Central South University(Science and Technology), 2021, 52(4): 1389-1398. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202104035.htm
|
[83] |
SHI Huai-long, WANG Jian-bin, WU Ping-bo, et al. Field measurements of the evolution of wheel wear and vehicle dynamics for high-speed trains[J]. Vehicle System Dynamics, 2018, 56(8): 1187-1206.
|
[84] |
罗光兵. 高速客车车轮不圆对车辆振动影响的分析[J]. 铁路计算机应用, 2017, 26(7): 74-77, 83. https://www.cnki.com.cn/Article/CJFDTOTAL-TLJS201707021.htm
LUO Guang-bing. Analysis on influence of wheel non circle of high speed passenger train for vehicle vibration[J]. Railway Computer Application, 2017, 26(7): 74-77, 83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLJS201707021.htm
|
[85] |
王晨, 马卫华, 罗世辉, 等. 机车车辆踏面损伤机理研究[J]. 振动、测试与诊断, 2016, 36(5): 890-896, 1022-1023. https://www.cnki.com.cn/Article/CJFDTOTAL-KXZG201723005.htm
WANG Chen, MA Wei-hua, LUO Shi-hui, et al. Research on the tread damage of locomotives[J]. Journal of Vibration, Measurement and Diagnosis, 2016, 36(5): 890-896, 1022-1023. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXZG201723005.htm
|
[86] |
迟胜超, 刘兵, 钱彦平, 等. 地铁列车全车车轮不圆度对比测试分析[J]. 铁道科学与工程学报, 2020, 17(8): 2093-2100. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202008025.htm
CHI Sheng-chao, LIU Bing, QIAN Yan-ping, et al. Comparison test and analysis of wheel out-of-roundness of metro train[J]. Journal of Railway Science and Engineering, 2020, 17(8): 2093-2100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202008025.htm
|
[87] |
FU De-long, WANG Wen-jing, DONG Lei. Analysis on the fatigue cracks in the bogie frame[J]. Engineering Failure Analysis, 2015, 58: 307-319.
|
[88] |
WANG Bin-jie, XIE Shu-qiang, JIANG Chao-yong, et al. An investigation into the fatigue failure of metro vehicle bogie frame[J]. Engineering Failure Analysis, 2020, 118: 104922.
|
[89] |
王斌杰, 谢树强, 齐延辉, 等. 运用条件下城轨车辆转向架构架疲劳寿命研究[J]. 铁道学报, 2020, 42(8): 37-44. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202008006.htm
WANG Bin-jie, XIE Shu-qiang, QI Yan-hui, et al. Research on fatigue life of bogie frame of urban mass transit vehicle under operating conditions[J]. Journal of the China Railway Society, 2020, 42(8): 37-44. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202008006.htm
|
[90] |
WU Hao, WU Ping-bo, LI Fan-song, et al. Fatigue analysis of the gearbox housing in high-speed trains under wheel polygonization using a multibody dynamics algorithm[J]. Engineering Failure Analysis, 2019, 100: 351-364.
|
[91] |
HU Wei-gang, LIU Zhi-ming, LIU De-kun, et al. Fatigue failure analysis of high speed train gearbox housings[J]. Engineering Failure Analysis, 2017, 73: 57-71.
|
[92] |
肖乾, 郑继峰, 昌超, 等. 高速列车谐波磨耗车轮滚动接触疲劳特性分析[J]. 润滑与密封, 2017, 42(1): 1-7, 14. https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF201701001.htm
XIAO Qian, ZHENG Ji-feng, CHANG Chao, et al. Analysis of harmonic wear wheels/rail rolling contact fatigue of high speed train[J]. Lubrication Engineering, 2017, 42(1): 1-7, 14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF201701001.htm
|
[93] |
张波, 杨云帆, 凌亮, 等. 车轮多边形对重载机车轮轨相互作用及接触损伤的影响分析[J]. 西南交通大学学报, 2023, 58(6): 1339-1346. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202306015.htm
ZHANG Bo, YANG Yun-fan, LING Liang, et al. Wheel-rail interaction and rolling fatigue damage of heavy-haul locomotive subjected to wheel polygonal wear[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1339-1346. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202306015.htm
|
[94] |
YAN Rui-guo, WANG Wen-jing, GUO Yu-tong, et al. Influence of wheel out-of-roundness on the remaining life of railway wheels under mixed-mode fatigue loading[J]. Fatigue and Fracture of Engineering Materials and Structures, 2022, 45(7): 2072-2085. doi: 10.1111/ffe.13723/abstract
|
[95] |
KANG Xi, CHEN Guang-xiong, ZHU Qi, et al. Effect of polygon-shaped wheels on fatigue fracture of fastener clips in high-speed railway lines[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2022, 236(8): 973-985.
|
[96] |
张笃超, 赵鑫, 黄双超, 等. 车轮多边形激励下的滚动接触疲劳裂纹瞬态扩展行为研究[J]. 润滑与密封, 2022, 47(5): 60-68. https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF202205009.htm
ZHANG Du-chao, ZHAO Xin, HUANG Shuang-chao, et al. A study on transient propagation behavior of rolling contact fatigue cracks in the presence of wheel polygon[J]. Lubrication Engineering, 2022, 47(5): 60-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RHMF202205009.htm
|
[97] |
肖乾, 王丹红, 陈道云, 等. 高速列车轮轨激励作用机理及其影响综述[J]. 交通运输工程学报, 2021, 21(3): 93-109. doi: 10.19818/j.cnki.1671-1637.2021.03.005
XIAO Qian, WANG Dan-hong, CHEN Dao-yun, et al. Review on mechanism and influence of wheel-rail excitation of high-speed train[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 93-109. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2021.03.005
|
[98] |
PAN Rui, ZHAO Xiu-juan, LIU Peng-tao, et al. Micro-mechanism of polygonization wear on railroad wheels[J]. Wear, 2017, 392/393: 213-220.
|
[99] |
吴丹. 轮轨周期性磨耗及其引起的车轨耦合系统动力学特性研究[D]. 兰州: 兰州交通大学, 2022.
WU Dan. Research on wheel-rail periodic wear anddynamic characteristics of vehicle-rail coupling system[D]. Lanzhou: Lanzhou Jiaotong University, 2022. (in Chinese)
|
[100] |
王鹏, 陶功权, 杨晓璇, 等. 中国高速列车车轮多边形磨耗特征分析[J]. 西南交通大学学报, 2023, 58(6): 1357-1365. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202306017.htm
WANG Peng, TAO Gong-quan, YANG Xiao-xuan, et al. Analysis of polygonal wear characteristics of Chinese high-speed train wheels[J]. Journal of Southwest Jiaotong University, 2023, 58(6): 1357-1365. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202306017.htm
|