Citation: | ZHU Xu, SUN Zhuo, ZHANG Ze-hua, YAN Mao-de. Stability of vehicle platoon control system with three types of delays[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 254-266. doi: 10.19818/j.cnki.1671-1637.2024.02.018 |
[1] |
LI S E, ZHENG Y, LI K Q, et al. Dynamical modeling and distributed control of connected and automated vehicles: challenges and opportunities[J]. IEEE Intelligent Transportation Systems Magazine, 2017, 9(3): 46-58. doi: 10.1109/MITS.2017.2709781
|
[2] |
张毅, 姚丹亚, 李力, 等. 智能车路协同系统关键技术与应用[J]. 交通运输系统工程与信息, 2021, 21(5): 40-51. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202105006.htm
ZHANG Yi, YAO Dan-ya, LI Li, et al. Technologies and applications for intelligent vehicle-infrastructure cooperation systems[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(5): 40-51. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202105006.htm
|
[3] |
LI Da-peng, LIU Yan-jun, TONG Shao-cheng, et al. Neural networks-based adaptive control for nonlinear state constrained systems with input delay[J]. IEEE Transactions on Cybernetics, 2019, 49(4): 1249-1258. doi: 10.1109/TCYB.2018.2799683
|
[4] |
DENG Chao, CHE Wei-wei, WU Zheng-guang. A dynamic periodic event-triggered approach to consensus of heterogeneous linear multiagent systems with time-varying communication delays[J]. IEEE Transactions on Cybernetics, 2021, 51(4): 1812-1821. doi: 10.1109/TCYB.2020.3015746
|
[5] |
HUANG Da-rong, LI Shao-qian, ZHANG Zhen-yuan, et al. Design and analysis of longitudinal controller for the platoon with time-varying delay[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(12): 23628-23639. doi: 10.1109/TITS.2022.3200026
|
[6] |
LIU An-quan, LI Tao, GU Yu, et al. Cooperative extended state observer based control of vehicle platoons with arbitrarily small time headway[J]. Automatica, 2021, 129: 109678. doi: 10.1016/j.automatica.2021.109678
|
[7] |
WANG Bing-ying, ZHENG Jun, REN Qi-lei, et al. Analysis of the intra-platoon message delivery delay in a platoon of vehicles[J]. IEEE Transactions on Vehicular Technology, 2021, 70(7): 7012-7026. doi: 10.1109/TVT.2021.3076157
|
[8] |
PLOEG J, SHUKLA D P, VAN DE WOUW N, et al. Controller synthesis for string stability of vehicle platoons[J]. IEEE Transactions on Intelligent Transportation Systems, 2014, 15(2): 854-865. doi: 10.1109/TITS.2013.2291493
|
[9] |
ZHENG Y, LI S E, WANG J Q, et al. Stability and scalability of homogeneous vehicular platoon: study on the influence of information flow topologies[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(1): 14-26. doi: 10.1109/TITS.2015.2402153
|
[10] |
李旭光, 张颖伟, 冯琳. 时滞系统的完全稳定性研究综述[J]. 控制与决策, 2018, 33(7): 1153-1170. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201807001.htm
LI Xu-guang, ZHANG Ying-wei, FENG Lin. Survey on complete stability study for time-delay systems[J]. Control and Decision, 2018, 33(7): 1153-1170. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201807001.htm
|
[11] |
AKKAYA S, AKBATI O, ERGENC A F. Stability analysis of connected vehicles with V2V communication and time delays: CTCR method via Bézout's resultant[J]. Transactions of the Institute of Measurement and Control, 2021, 43(8): 1802-1829. doi: 10.1177/0142331220981426
|
[12] |
ABOLFAZLI E, BESSELINK B, CHARALAMBOUS T. On time headway selection in platoons under the MPF topology in the presence of communication delays[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(7): 8881-8894. doi: 10.1109/TITS.2021.3087484
|
[13] |
GAO Q B, OLGAC N. Stability analysis for LTI systems with multiple time delays using the bounds of its imaginary spectra[J]. Systems and Control Letters, 2017, 102: 112-118. doi: 10.1016/j.sysconle.2017.02.003
|
[14] |
GUO Ge, KANG Jian, LEI Hong-bo, et al. Finite-time stabilization of a collection of connected vehicles subject to communication interruptions[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(8): 10627-10635. doi: 10.1109/TITS.2021.3095147
|
[15] |
GAO Q B, OLGAC N. Bounds of imaginary spectra of LTI systems in the domain of two of the multiple time delays[J]. Automatica, 2016, 72: 235-241. doi: 10.1016/j.automatica.2016.05.011
|
[16] |
CHEN Jian-zhong, LIANG Huan, LI Jing, et al. Connected automated vehicle platoon control with input saturation and variable time headway strategy[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(8): 4929-4940. doi: 10.1109/TITS.2020.2983468
|
[17] |
李永福, 何昌鹏, 朱浩, 等. 通信延时环境下异质网联车辆队列非线性纵向控制[J]. 自动化学报, 2021, 47(12): 2841-2856. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO202112011.htm
LI Yong-fu, HE Chang-peng, ZHU Hao, et al. Nonlinear longitudinal control for heterogeneous connected vehicle platoon in the presence of communication delays[J]. Acta Automatica Sinica, 2021, 47(12): 2841-2856. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO202112011.htm
|
[18] |
SHI Min, YU Ya-juan, XU Qi. Delay-dependent consensus condition for a class of fractional-order linear multi-agent systems with input time-delay[J]. International Journal of Systems Science, 2019, 50(4): 669-678. doi: 10.1080/00207721.2019.1567865
|
[19] |
SADEK B A, HOUSSAINE T E, NOREDDINE C. Small- gain theorem and finite-frequency analysis of TCP/AQM system with time varying delay[J]. IET Control Theory and Applications, 2019, 13(13): 1971-1982. doi: 10.1049/iet-cta.2018.6466
|
[20] |
CEPEDA-GOMEZ R, OLGAC N. Consensus analysis with large and multiple communication delays using spectral delay space concept[J]. International Journal of Control, 2011, 84(12): 1996-2007. doi: 10.1080/00207179.2011.631151
|
[21] |
朱旭, 张泽华, 闫茂德. 含输入时延与通信时延的车辆队列PID控制系统稳定性[J]. 交通运输工程学报, 2022, 22(3): 184-198. doi: 10.19818/j.cnki.1671-1637.2022.03.015
ZHU Xu, ZHANG Ze-hua, YAN Mao-de. Stability of PID control system for vehicle platoon with input delay and communication delay[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 184-198. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.03.015
|
[22] |
GONG Jian, CAO Jin-de, ZHAO Yuan, et al. Sampling- based cooperative adaptive cruise control subject to communication delays and actuator lags[J]. Mathematics and Computers in Simulation, 2020, 171: 13-25. doi: 10.1016/j.matcom.2019.10.012
|
[23] |
HU San-gen, WEN Hui-ying, XU Lun-hui, et al. Stability of platoon of adaptive cruise control vehicles with time delay[J]. Transportation Letters, 2019, 11(9): 506-515. doi: 10.1080/19427867.2017.1407488
|
[24] |
XING H T, PLOEG J, NIJMEIJER H. Padé approximation of delays in cooperative ACC based on string stability requirements[J]. IEEE Transactions on Intelligent Vehicles, 2016, 1(3): 277-286. doi: 10.1109/TIV.2017.2662482
|
[25] |
LIU Yong-gui, GAO Huan-li. Stability, scalability, speedability, and string stability of connected vehicle systems[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52(5): 2819-2832. doi: 10.1109/TSMC.2021.3054794
|
[26] |
CHEHARDOLI H, HOMAEINEZHAD M R, GHASEMI A. Control design and stability analysis of homogeneous traffic flow under time delay: a new spacing policy[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2019, 233(3): 622-635. doi: 10.1177/0954407017751789
|
[27] |
ALIKOC B, ERGENC A F. A polynomial method for stability analysis of LTI systems independent of delays[J]. SIAM Journal on Control and Optimization, 2017, 55(4): 2661-2683. doi: 10.1137/16M1077726
|
[28] |
ZHOU Bin, LIU Qing-song. Input delay compensation for neutral type time-delay systems[J]. Automatica, 2017, 78: 309-319. doi: 10.1016/j.automatica.2016.12.015
|
[29] |
GAIDHANE V H, HOTE Y V. An improved approach for stability analysis of discrete system[J]. Journal of Control, Automation and Electrical Systems, 2018, 29(5): 535-540. doi: 10.1007/s40313-018-0396-5
|
[30] |
CEPEDA-GOMEZ R, OLGAC N. Stability of formation control using a consensus protocol under directed communications with two time delays and delay scheduling[J]. International Journal of Systems Science, 2016, 47(2): 433-449. doi: 10.1080/00207721.2014.886745
|
[31] |
BIAN You-gang, ZHENG Yang, REN Wei, et al. Reducing time headway for platooning of connected vehicles via V2V communication[J]. Transportation Research Part C: Emerging Technologies, 2019, 102: 87-105. doi: 10.1016/j.trc.2019.03.002
|