Volume 24 Issue 2
Apr.  2024
Turn off MathJax
Article Contents
ZHOU Liang, XIA Jin-feng, LI Zhong-qi. Improved model-free adaptive control for EMUs velocity tracking system[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 267-280. doi: 10.19818/j.cnki.1671-1637.2024.02.019
Citation: ZHOU Liang, XIA Jin-feng, LI Zhong-qi. Improved model-free adaptive control for EMUs velocity tracking system[J]. Journal of Traffic and Transportation Engineering, 2024, 24(2): 267-280. doi: 10.19818/j.cnki.1671-1637.2024.02.019

Improved model-free adaptive control for EMUs velocity tracking system

doi: 10.19818/j.cnki.1671-1637.2024.02.019
Funds:

National Natural Science Foundation of China 52162048

National Natural Science Foundation of China 61991404

Jiangxi Provincial Program for Academic and Technical Leaders Training of Major Disciplines 20213BCJ22002

More Information
  • Author Bio:

    ZHOU Liang(1997-), male, doctoral student, zl971125@163.com

    LI Zhong-qi(1975-), male, professor, PhD, lzq0828@163.com

  • Received Date: 2023-10-03
    Available Online: 2024-05-16
  • Publish Date: 2024-04-30
  • To improve the tracking accuracy and stable operation of the train control system, an improved multiple-input multiple-output (MIMO) model-free adaptive control (MFAC) method was proposed. Based on the dynamic linearization technology, the input-output data of each power unit of the system were equivalently transformed into a full form dynamic linearization (FFDL) data model that better fitted the actual operation characteristics of high-speed electric multiple units (EMUs). By incorporating the output error rates into the objective criterion function and weighting the fusion of output errors and output error rates, a new model-free adaptive control scheme with output error rates (MFAC-OER) was derived. The control performance of the algorithm and the equivalent description degree of the system were further improved by delayed estimation of uncertainty factors, such as external disturbances and parameter errors in the FFDL data model. The proposed method was simulated and tested on a CRH380A high-speed EMUs semi-physical test platform equipped in the laboratory to track the actual speed-displacement curve from Jinan to Xuzhou and compare it with some traditional algorithms. Simulation results show that the speed errors of each power unit of EMUs obtained by the MFAC-OER method are within [-0.151, 0.136] km·h-1, with the control force and acceleration smoothly varying in the ranges of [-48, 42] kN and [-0.785, 0.687] m·s-2, respectively. The proposed method outperforms the proportional-integral-derivative (PID) and traditional MFAC methods in the control performance. The overall simulation results show that the MFAC-OER method can not only quickly reach the steady state of the system but also possesses good resistance to external disturbances, meeting the tracking accuracy and safety requirements of the EMUs.

     

  • loading
  • [1]
    李中奇, 周靓, 杨辉, 等. 基于预测控制的动车组迭代学习控制方法[J]. 交通运输工程学报, 2023, 23(1): 280-290. doi: 10.19818/j.cnki.1671-1637.2023.01.021

    LI Zhong-qi, ZHOU Liang, YANG Hui, et al. Iterative learning control method for EMUs based on predictive control[J]. Journal of Traffic and Transportation Engineering, 2023, 23(1): 280-290. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2023.01.021
    [2]
    ZHANG Kun-peng, JIANG Bin, CHEN Fu-yang. Multiple-model based diagnosis of multiple faults with high speed train applications using second level adaptation[J]. IEEE Transactions on Industrial Electronics, 2021, 68(7): 6257-6266. doi: 10.1109/TIE.2020.2994867
    [3]
    YUAN Han, HUANG De-qing, LI Xue-fang. Adaptive speed tracking control for high speed trains under stochastic operation environments[J]. Automatica, 2023, 147: 110674. doi: 10.1016/j.automatica.2022.110674
    [4]
    CHEN Yao, DONG Hai-rong, LU Jin-hu, et al. A super- twisting-like algorithm and its application to train operation control with optimal utilization of adhesion force[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(11): 3035-3044. doi: 10.1109/TITS.2016.2539361
    [5]
    李中奇, 丁俊英, 杨辉, 等. 基于控制器匹配的高速列车广义预测控制方法[J]. 铁道学报, 2018, 40(9): 82-89. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201809013.htm

    LI Zhong-qi, DING Jun-ying, YANG Hui, et al. Generalized predictive control tuning for high-speed train based on controller matching method[J]. Journal of the China Railway Society, 2018, 40(9): 82-89. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201809013.htm
    [6]
    贾超. 考虑安全约束的列车自动驾驶多质点非线性预测控制[D]. 北京: 北京交通大学, 2020.

    JIA Chao. Nonlinear predictive control for automatic train operation with consideration of safety constraints and multi-point model[D]. Beijing: Beijing Jiaotong University, 2020. (in Chinese)
    [7]
    徐传芳, 陈希有, 郑祥, 等. 基于动态面方法的高速列车蠕滑速度跟踪控制[J]. 铁道学报, 2020, 42(2): 41-49. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202002006.htm

    XU Chuan-fang, CHEN Xi-you, ZHENG Xiang, et al. Slip velocity tracking control of high-speed train using dynamic surface method[J]. Journal of the China Railway Society, 2020, 42(2): 41-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202002006.htm
    [8]
    杨杰, 陈昱圻, 王盼盼. 基于改进粒子群算法的列车速度跟踪自抗扰控制器设计[J]. 铁道学报, 2021, 43(7): 40-46. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202107006.htm

    YANG Jie, CHEN Yu-qi, WANG Pan-pan. Design of active disturbance rejection controller for train speed tracking based on improved particle swarm optimization[J]. Journal of the China Railway Society, 2021, 43(7): 40-46. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB202107006.htm
    [9]
    YANG Hui, FU Ya-ting, WANG Dian-hui. Multi-ANFIS model based synchronous tracking control of high-speed electric multiple unit[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(3): 1472-1484. doi: 10.1109/TFUZZ.2017.2725819
    [10]
    杨辉, 张芳, 张坤鹏, 等. 基于分布式模型的动车组预测控制方法[J]. 自动化学报, 2014, 40(9): 1912-1921. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201411027.htm

    YANG Hui, ZHANG Fang, ZHANG Kun-peng, et al. Predictive control using a distributed model for electric multiple unit[J]. Acta Automatica Sinica, 2014, 40(9): 1912-1921. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201411027.htm
    [11]
    ZHOU Liang, LI Zhong-qi, YANG Hui, et al. Data-driven model-free adaptive sliding mode control based on FFDL for electric multiple units[J]. Applied Sciences, 2022, 12(21): 10983. doi: 10.3390/app122110983
    [12]
    HOU Zhong-sheng, JIN Shang-tai. A novel data-driven control approach for a class of discrete-time nonlinear systems[J]. IEEE Transactions on Control Systems Technology, 2011, 19(6): 1549-1558. doi: 10.1109/TCST.2010.2093136
    [13]
    MA Yong-sheng, CHE Wei-wei, DENG Chao, et al. Distributed model-free adaptive control for learning nonlinear MASs under DoS attacks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(3): 1146-1155. doi: 10.1109/TNNLS.2021.3104978
    [14]
    MA Yong-sheng, CHE Wei-wei, DENG Chao. Dynamic event- triggered model-free adaptive control for nonlinear CPSs under aperiodic DoS attacks[J]. Information Sciences, 2022, 589: 790-801. doi: 10.1016/j.ins.2022.01.009
    [15]
    LIN C J, LAI C C, HSIA K H, et al. Apply model-free adaptive control approach for mobile robot path following[J]. Journal of Robotics, Networking and Artificial Life, 2020, 7(3): 190-193. doi: 10.2991/jrnal.k.200909.010
    [16]
    WANG Huai-zhen, FANG Li-jin, SONG Tang-zhong, et al. Model-free adaptive sliding mode control with adjustable funnel boundary for robot manipulators with uncertainties[J]. The Review of Scientific Instruments, 2021, 92(6): 065101. doi: 10.1063/5.0037054
    [17]
    LIU Shi-da, HOU Zhong-sheng, ZHANG Xin, et al. Model-free adaptive control method for a class of unknown MIMO systems with measurement noise and application to quadrotor aircraft[J]. IET Control Theory and Applications, 2020, 14(15): 2084-2096. doi: 10.1049/iet-cta.2020.0073
    [18]
    潘晓龙, 鲜斌. 小型无人直升机的无模型自适应鲁棒控制设计[J]. 控制理论与应用, 2017, 34(9): 1171-1178. https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201709006.htm

    PAN Xiao-long, XIAN Bin. Model-free adaptive robust control design for a small unmanned helicopter[J]. Control Theory and Applications, 2017, 34(9): 1171-1178. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZLY201709006.htm
    [19]
    石卫师. 基于无模型自适应控制的城轨列车自动驾驶研究[J]. 铁道学报, 2016, 38(3): 72-77. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201603014.htm

    SHI Wei-shi. Research on automatic train operation based on model-free adaptive control[J]. Journal of the China Railway Society, 2016, 38(3): 72-77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201603014.htm
    [20]
    WANG Hao-jun, HOU Zhong-sheng, JIN Shang-tai. Model-free adaptive fault-tolerant control for multiple point-mass subway trains with speed and traction/braking force constraints[J]. IFAC PapersOnLine, 2020, 53(2): 3916-3921. doi: 10.1016/j.ifacol.2020.12.2239
    [21]
    李中奇, 周靓, 杨辉. 高速动车组数据驱动无模型自适应控制方法[J]. 自动化学报, 2023, 49(2): 437-447. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO202401015.htm

    LI Zhong-qi, ZHOU Liang, YANG Hui. Data-driven model-free adaptive control method for high-speed electric multiple unit[J]. Acta Automatica Sinica, 2023, 49(2): 437-447. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO202401015.htm
    [22]
    WANG Hao-jun, HOU Zhong-sheng. Model-free adaptive fault-tolerant control for subway trains with speed and traction/braking force constraints[J]. IET Control Theory and Applications, 2020, 14(12): 1557-1566. doi: 10.1049/iet-cta.2019.1161
    [23]
    王海, 刘根锋, 侯忠生. 高速列车数据驱动无模型自适应容错控制[J]. 控制与决策, 2022, 37(5): 1127-1136. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202205004.htm

    WANG Hai, LIU Gen-feng, HOU Zhong-sheng. Data-driven model-free adaptive fault tolerant control for high-speed trains[J]. Control and Decision, 2022, 37(5): 1127-1136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202205004.htm
    [24]
    XIONG Shuang-shuang, HOU Zhong-sheng. Model-free adaptive control for unknown MIMO nonaffine nonlinear discrete-time systems with experimental validation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(4): 1727-1739. doi: 10.1109/TNNLS.2020.3043711
    [25]
    HOU Zhong-sheng, XIONG Shuang-shuang. On model-free adaptive control and its stability analysis[J]. IEEE Transactions on Automatic Control, 2019, 64(11): 4555-4569. doi: 10.1109/TAC.2019.2894586
    [26]
    DONG Na, LYU Wen-jin, ZHU Shuo, et al. Model-free adaptive nonlinear control of the absorption refrigeration system[J]. Nonlinear Dynamics, 2022, 107(2): 1623-1635. doi: 10.1007/s11071-021-06964-5
    [27]
    XU Qing-song. Digital integral terminal sliding mode predictive control of piezoelectric-driven motion system[J]. IEEE Transactions on Industrial Electronics, 2016, 63(6): 3976-3984. doi: 10.1109/TIE.2015.2504343
    [28]
    李中奇, 周靓, 杨辉. 高速动车组数据驱动无模型自适应积分滑模预测控制[J]. 自动化学报, 2024, 50(1): 194-210. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO202401015.htm

    LI Zhong-qi, ZHOU Liang, YANG Hui. Data-driven model-free adaptive integral sliding mode predictive control for high-speed electric multiple unit[J]. Acta Automatica Sinica, 2024, 50(1): 194-210. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO202401015.htm
    [29]
    王龙生. 基于多质点模型的高速列车自动驾驶预测控制[D]. 北京: 北京交通大学, 2016.

    WANG Long-sheng. Predictive control for automatic operation of high-speed trains based on multi-point model[D]. Beijing: Beijing Jiaotong University, 2016. (in Chinese)
    [30]
    ZHOU Liang, LI Zhong-qi, YANG Hui, et al. Adaptive terminal sliding mode control for high-speed EMU: a MIMO data-driven approach[J]. IEEE Transactions on Automation Science and Engineering, 2024, DOI: 10.1109/TASE.2024.3373037.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (380) PDF downloads(43) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return