Volume 24 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
LI Sheng, ZHANG Hai-tao, SUN Yu, LIU Ya-ru, YU Shi-qing, WANG Miao, ZHANG Zong-shuai. Review on deterioration behavior and life extension technologies of cement pavement in service[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 25-47. doi: 10.19818/j.cnki.1671-1637.2024.03.002
Citation: LI Sheng, ZHANG Hai-tao, SUN Yu, LIU Ya-ru, YU Shi-qing, WANG Miao, ZHANG Zong-shuai. Review on deterioration behavior and life extension technologies of cement pavement in service[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 25-47. doi: 10.19818/j.cnki.1671-1637.2024.03.002

Review on deterioration behavior and life extension technologies of cement pavement in service

doi: 10.19818/j.cnki.1671-1637.2024.03.002
Funds:

National Key Research and Development Program of China 2021YFB2601004

National Natural Science Foundation of China 52208422

National Natural Science Foundation of China 52378436

National Science Foundation of Hunan Province 2022JJ30598

Science and Technology Progress and Innovation Plan Project of Hunan Provincial Department of Transportation 202235

More Information
  • Author Bio:

    LI Sheng(1980-), male, professor, PhD, lishengttt@163.com

  • Received Date: 2024-01-14
    Available Online: 2024-07-18
  • Publish Date: 2024-06-30
  • In order to improve the durability and service life of cement pavement in service, the mechanical response and fatigue damage evolution behavior of cement pavement structure were reviewed based on the research status of life extension repair technologies of cement pavement in China and abroad. The formation mechanism of main diseases, deterioration behavior, and characteristics of cement pavement were analyzed, and the research progresses of different deterioration behavior control technologies were summarized. Based on the idea of making full use of the residual bearing capacity of old cement pavement slabs and the research of the mechanical behavior of old cement pavement with overlay structure for life extension, a typical overlay structure of separated continuous reinforced concrete (CRC) slabs under harsh environment was proposed. The perceptive technology of service behavior of cement pavement structure was summarized. Research results show that the establishment of a mechanical model accurately reflecting the service behavior of cement pavement can provide a scientific theoretical basis for its reasonable design and accurate life prediction. Evaluating and repairing the technical condition of cement pavement in time at the initial stage of damage can extend its service life to a certain extent. Joint load transfer capacity and void beneath the slab are significant factors affecting the durability of cement pavement, which should be paid more attention in the repair process of old cement pavement. Overlaying asphalt concrete and cement concrete on old cement pavement is an effective measure to extend its life. In terms of whole life-cycle, overlaying CRC slabs is an effective technical means to extend the life of cement pavement in service with heavy traffic. In the future, a life prediction theory should be established by considering the deterioration behavior and residual strength of cement pavement in service, and high-performance, compatible, and environmentally friendly materials for life extension and repair of cement pavement should be developed. With the help of the perception and processing technologies of multi-source heterogeneous big data of service performance, the theoretical technology and industry norms of overlay structure design of cement pavement in service should be improved, and the service level and service life of cement pavement in service are comprehensively improved.

     

  • loading
  • [1]
    《中国公路学报》编辑部. 中国路面工程学术研究综述·2020[J]. 中国公路学报, 2020, 33(10): 1-66. doi: 10.3969/j.issn.1001-7372.2020.10.001

    Editorial Department of China Journal of Highway and Transport. Review on China's pavement engineering research·2020[J]. China Journal of Highway and Transport, 2020, 33(10): 1-66. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.10.001
    [2]
    张娟, 叶莉, 李伟. 水泥混凝土路面错台自动检测方法[J]. 交通运输工程学报, 2016, 16(4): 26-36. doi: 10.19818/j.cnki.1671-1637.2016.04.003

    ZHANG Juan, YE Li, LI Wei. Automatic detecting method of cement concrete pavement fault[J]. Journal of Traffic and Transportation Engineering, 2016, 16(4): 26-36. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2016.04.003
    [3]
    YEO S H, MO K H, HOSEN M A, et al. Properties of cementitious repair materials for concrete pavement[J]. Advances in Materials Science and Engineering, 2022, 2022: 3057801.
    [4]
    吴国雄, 王晨, 向阳开, 等. 缺陷水泥混凝土路面裂缝扩展机理研究[J]. 重庆交通大学学报(自然科学版), 2008, 27(3): 400-404. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT200803017.htm

    WU Guo-xiong, WANG Chen, XIANG Yang-kai, et al. Research on mechanism of crack expanding of blemish cement concrete pavement[J]. Journal of Chongqing Jiaotong University (Natural Science), 2008, 27(3): 400-404. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT200803017.htm
    [5]
    申爱琴. 水泥混凝土路面裂缝修补材料研究: 聚合物改性水泥灌浆材料研究[D]. 西安: 长安大学, 2005.

    SHEN Ai-qin. Study on the crack mending materials of cement concrete pavement: study on the grouting materials of polymer modified cement[D]. Xi'an: Chang'an University, 2005. (in Chinese)
    [6]
    张健. 减缩型聚羧酸减水剂对水泥基材料收缩开裂的影响及作用机制[D]. 南京: 东南大学, 2022.

    ZHANG Jian. Effect of shrinkage-reducing polycarboxylate superplasticizer on shrinkage cracking of cement-based materials and its mechanism[D]. Nanjing: Southeast University, 2022. (in Chinese)
    [7]
    马一平, 余少同, 游璐, 等. 纤维参数对水泥基材料减裂效果的影响[J]. 建筑材料学报, 2018, 21(5): 797-802. doi: 10.3969/j.issn.1007-9629.2018.05.016

    MA Yi-ping, YU Shao-tong, YOU Lu, et al. Effect of fiber parameters on crack reduction of cement based materials[J]. Journal of Building Materials, 2018, 21(5): 797-802. (in Chinese) doi: 10.3969/j.issn.1007-9629.2018.05.016
    [8]
    马一平, 刘静静, 朱蓓蓉, 等. 密实度对水泥基材料收缩开裂性能的影响[J]. 建筑材料学报, 2014, 17(1): 126-131. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201401024.htm

    MA Yi-ping, LIU Jing-jing, ZHU Bei-rong, et al. Effect of compactness on shrinkage cracking of cement-based materials[J]. Journal of Building Materials, 2014, 17(1): 126-131. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCX201401024.htm
    [9]
    WEI Ya, LIANG Si-ming, GAO Xiang. Numerical evaluation of moisture warping and stress in concrete pavement slabs with different water-to-cement ratio and thickness[J]. Journal of Engineering Mechanics, 2017, 143(2): 04016111. doi: 10.1061/(ASCE)EM.1943-7889.0001180
    [10]
    JOSHAGHANI A, ZOLLINGER D G. Assessment of concrete pavement set gradient based on analysis of slab behavior and field test data[J]. Transportation Research Record, 2019, 2673(6): 512-523. doi: 10.1177/0361198119849900
    [11]
    YANG Jing-yu, GUO Yin-chuan, SHEN Ai-qin, et al. Research on drying shrinkage deformation and cracking risk of pavement concrete internally cured by SAPs[J]. Construction and Building Materials, 2019, 227: 116705. doi: 10.1016/j.conbuildmat.2019.116705
    [12]
    QIN Xiao, SHEN Ai-qin, LYU Zheng-hua, et al. Research on water transport behaviors and hydration characteristics of internal curing pavement concrete[J]. Construction and Building Materials, 2020, 248: 118714. doi: 10.1016/j.conbuildmat.2020.118714
    [13]
    GUNATILAKE M D, MARKANDEYA A, SEDAGHAT A, et al. Effect of different cracking mitigation measures on high early-strength concrete performance[J]. Journal of Materials in Civil Engineering, 2021, 33(8): 04021205. doi: 10.1061/(ASCE)MT.1943-5533.0003852
    [14]
    周正峰, 罗君豪, 康玉峰. 水泥路面接缝传力杆周围混凝土损伤塑性分析[J]. 交通运输工程学报, 2022, 22(4): 117-127. doi: 10.19818/j.cnki.1671-1637.2022.04.008

    ZHOU Zheng-feng, LUO Jun-hao, KANG Yu-feng. Damaged plastic analysis of concrete around dowel bars at joint in cement pavement[J]. Journal of Traffic and Transportation Engineering, 2022, 22(4): 117-127. (in Chinese) doi: 10.19818/j.cnki.1671-1637.2022.04.008
    [15]
    ZHANG Jia-ke, ZHANG Gao-wang, WANG Yu-xiang, et al. Mechanical behavior of doweled joints in concrete pavements: a review[J]. Journal of Transportation Engineering, Part B: Pavements, 2022, 148(4): 03122002. doi: 10.1061/JPEODX.0000399
    [16]
    BUENO M, ARRAIGADA M, PARTL M N. Induction heating technology for improving compaction of asphalt joints[J]. International Journal of Pavement Engineering, 2018, 21(12): 1532-1540.
    [17]
    杨宁, 白二雷, 许金余, 等. VAE乳胶粉掺量对苯丙乳液水泥基路面填缝料拉伸性能的影响[J]. 空军工程大学学报(自然科学版), 2018, 19(4): 105-111. https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201804018.htm

    YANG Ning, BAI Er-lei, XU Jin-yu, et al. Effects of VAE re-dispersible emulsion powder content on tensile properties of styrene-acrylic emulsion based cement compound joint sealant[J]. Journal of Air Force Engineering University (Natural Science Edition), 2018, 19(4): 105-111. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJGC201804018.htm
    [18]
    刘绍敏, 吴培关, 张东长. 水泥混凝土路面新型填缝料的施工工艺研究[J]. 科学技术与工程, 2012, 12(1): 227-229, 233. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201201057.htm

    LIU Shao-min, WU Pei-guan, ZHANG Dong-chang. Research on construction technology of joint fillers for cement concrete pavement[J]. Science Technology and Engineering, 2012, 12(1): 227-229, 233. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201201057.htm
    [19]
    LU Lu, ZHAO De-ying, FAN Ji-zhou, et al. A brief review of sealants for cement concrete pavement joints and cracks[J]. Road Materials and Pavement Design, 2021, 23(7): 1467-1491.
    [20]
    SHI Shuang, MA Tao, GU Lin-hao, et al. Thermal behaviors, interfacial microstructure and molecular orientation of shape memory polyurethane/SiO2 based sealant for concrete pavement[J]. Polymers, 2022, 14(16): 3336.
    [21]
    XU Hui-yu, HU Zhi-hui, XU Tao. Effects of healing agent on shape memory, mechanical and self-healing properties of joint filler on cement concrete pavement[J]. Construction and Building Materials, 2021, 304: 124592.
    [22]
    时爽. 具有形状记忆效应的水泥路面嵌缝料研发及自修复机理研究[D]. 南京: 南京林业大学, 2019.

    SHI Shuang. Development and self-healing mechanism of joint sealant with shape memory effect in cement concrete pavement[D]. Nanjing: Nanjing Forestry University, 2019. (in Chinese)
    [23]
    薛彦卿, 黄晓明, 石小武, 等. 含脱空水泥混凝土路面交通荷载下的疲劳损伤机理[J]. 东南大学学报(自然科学版), 2014, 44(1): 199-204. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201401037.htm

    XUE Yan-qing, HUANG Xiao-ming, SHI Xiao-wu, et al. Fatigue damage mechanism of cement concrete pavement with void under traffic load[J]. Journal of Southeast University (Natural Science Edition), 2014, 44(1): 199-204. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX201401037.htm
    [24]
    童申家, 叶丛, 王乾, 等. 板底脱空水泥路面疲劳寿命预估方程研究[J]. 广西大学学报(自然科学版), 2018, 43(1): 304-313. https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201801035.htm

    TONG Shen-jia, YE Cong, WANG Qian, et al. Research on fatigue life prediction of cement pavement with void[J]. Journal of Guangxi University(Natural Science Edition), 2018, 43(1): 304-313. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXKZ201801035.htm
    [25]
    LIU Bang-yi, ZHOU Yang, GU Lin-hao, et al. Finite element simulation and multi-factor stress prediction model for cement concrete pavement considering void under slab[J]. Materials, 2020, 13(22): 5294.
    [26]
    LI Hao, FANG Na-ren, WANG Xuan-cang, et al. Load transfer efficiency analysis and void evaluation of composite pavement cement concrete slab[J]. Advances in Materials Science and Engineering, 2022, 2022: 4490485.
    [27]
    陈望平, 刘安刚, 唐钰杰, 等. 动水压力下水泥混凝土路面基层溶蚀脱空研究[J]. 混凝土, 2022(8): 174-178. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF202208036.htm

    CHEN Wang-ping, LIU An-gang, TANG Yu-jie, et al. Dissolution and cavitation of cement concrete pavement base under hydrodynamic pressure[J]. Concrete, 2022(8): 174-178. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF202208036.htm
    [28]
    叶丛, 王乾, 丁雅碧. 脱空耦合下水泥混凝土路面疲劳寿命影响因素分析[J]. 公路, 2018, 63(7): 100-105. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201807021.htm

    YE Cong, WANG Qian, DING Ya-bi. Analysis of factors affecting fatigue life of cement concrete pavement under void coupling[J]. Highway, 2018, 63(7): 100-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201807021.htm
    [29]
    陈祥, 朱洪洲, 范世平, 等. 荷载-温度-水共同作用下脱空水泥混凝土路面板力学响应分析[J]. 公路交通科技, 2022, 39(2): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202202002.htm

    CHEN Xiang, ZHU Hong-zhou, FAN Shi-ping, et al. Analysis on mechanical response of void beneath cement concrete pavement slab under load-temperature-water interaction[J]. Journal of Highway and Transportation Research and Development, 2022, 39(2): 11-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202202002.htm
    [30]
    王芳, 王选仓, 刘凯. 同板动弯沉差脱空判别方法和标准[J]. 土木建筑与环境工程, 2010, 32(3): 75-82. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201003014.htm

    WANG Fang, WANG Xuan-cang, LIU Kai. Determination method and criterion for voids by dynamic deflection difference in the same cement slab[J]. Journal of Civil, Architectural and Environmental Engineering, 2010, 32(3): 75-82. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201003014.htm
    [31]
    范晓燕, 冯兴亮, 台电仓. 长寿命复合路面脱空检测与评价方法研究[J]. 中外公路, 2021, 41(增2): 106-109. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL2021S2023.htm

    FAN Xiao-yan, FENG Xing-liang, TAI Dian-cang. Study on detection and evaluation method of void in long-life composite pavement[J]. Journal of China and Foreign Highway, 2021, 41(S2): 106-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL2021S2023.htm
    [32]
    薛忠军, 王佳妮, 张肖宁. 基于Fisher函数的水泥路面板底脱空判别方法[J]. 振动与冲击, 2013, 32(17): 155-160. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201317031.htm

    XUE Zhong-jun, WANG Jia-ni, ZHANG Xiao-ning. Discrimination method for cement road slab void based on fisher function[J]. Journal of Vibration and Shock, 2013, 32(17): 155-160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201317031.htm
    [33]
    余秋琴, 罗婷倚, 杨哲, 等. 基于GPR信号的水泥路面脱空特征表征方法[J]. 地下空间与工程学报, 2021, 17(增2): 902-911. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2021S2053.htm

    YU Qiu-qin, LUO Ting-yi, YANG Zhe, et al. Feature extraction method of void defect in concrete pavement from GPR signal[J]. Chinese Journal of Underground Space and Engineering, 2021, 17(S2): 902-911. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE2021S2053.htm
    [34]
    罗婷倚, 杨哲, 张军, 等. 基于GPR信号和卷积核的水泥路面脱空识别算法[J]. 地球物理学进展, 2022, 37(6): 2580-2588. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202206035.htm

    LUO Ting-yi, YANG Zhe, ZHANG Jun, et al. Cement pavement void recognition algorithm based on convolution kernel with GPR A-Scans[J]. Progress in Geophysics, 2022, 37(6): 2580-2588. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202206035.htm
    [35]
    郭成超, 王复明, 钟燕辉. 水泥混凝土路面脱空高聚物注浆技术研究[J]. 公路, 2008(10): 232-236. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200810054.htm

    GUO Cheng-chao, WANG Fu-ming, ZHONG Yan-hui. Research on polymer grouting technology for cement concrete pavement void[J]. Highway, 2008(10): 232-236. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL200810054.htm
    [36]
    GUO Tian-xiong, WENG Xing-zhong, LIU Cong, et al. Evaluation of the bonding and fatigue properties of an innovative rapid repair structure for concrete pavement[J]. Construction and Building Materials, 2020, 235: 117484.
    [37]
    付智. 高速公路水泥混凝土路面的表面功能研究[J]. 施工技术, 2013, 42(11): 108-113. https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS201311036.htm

    FU Zhi. The surface function research of cement concrete pavement on expressway[J]. Construction Technology, 2013, 42(11): 108-113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SGJS201311036.htm
    [38]
    李晶晶, 张擎, 陈忠达. 水泥路面环氧树脂磨耗层的抗滑衰变模型[J]. 深圳大学学报(理工版), 2017, 34(6): 597-603. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201706008.htm

    LI Jing-jing, ZHANG Qing, CHEN Zhong-da. Skid resistance decay model of epoxy wear layer on cement pavement[J]. Journal of Shenzhen University (Science and Engineering), 2017, 34(6): 597-603. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL201706008.htm
    [39]
    SUN Pan, LIANG Xia-yi, DING Yue, et al. Laboratory evaluation on water-based and flexible epoxy/SiO2 nanocomposites to enhance anti-sliding effectiveness of pavement[J]. Materials Research Express, 2020, 7(2): 025303.
    [40]
    周显鹏, 刘朝晖, 熊征, 等. 聚合物改性水泥路面抗滑降噪施工技术分析[J]. 公路工程, 2018, 43(3): 179-183. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201803036.htm

    ZHOU Xian-peng, LIU Chao-hui, XIONG Zheng, et al. Analysis of anti skid and noise reduction construction technology of polymer modified cement pavement[J]. Highway Engineering, 2018, 43(3): 179-183. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201803036.htm
    [41]
    丛卓红, 陈恒达, 郑南翔, 等. 水泥混凝土路面纹理的研究进展[J]. 材料导报, 2020, 34(9): 9110-9116. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202009016.htm

    CONG Zhuo-hong, CHEN Heng-da, ZHENG Nan-xiang, et al. Surface texture of cement concrete pavement: a review[J]. Materials Reports, 2020, 34(9): 9110-9116. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202009016.htm
    [42]
    陈飞宏, 张云, 梁军林, 等. 路面机制砂水泥混凝土的抗滑耐久性研究[J]. 混凝土, 2021(10): 44-47. https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF202110013.htm

    CHEN Fei-hong, ZHANG Yun, LIANG Jun-lin, et al. Study on anti-skid durability of pavement manufactured sand cement concrete[J]. Concrete, 2021(10): 44-47. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HLTF202110013.htm
    [43]
    李晓辉, 李波, 杨小龙. 基于水泥路面槽参数的表面功能研究[J]. 公路工程, 2015, 40(2): 109-112. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201502025.htm

    LI Xiao-hui, LI Bo, YANG Xiao-long. Research on technology of pavement skid and noise reduction of tunnel concrete[J]. Highway Engineering, 2015, 40(2): 109-112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201502025.htm
    [44]
    马林, 罗志光, 李宝强, 等. 基于压力胶片技术的隧道纹理化路面抗滑性能研究[J]. 公路交通科技, 2020, 37(6): 22-28, 43. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202006003.htm

    MA Lin, LUO Zhi-guang, LI Bao-qiang, et al. Study on skid-resistance performance of tunnel textured pavement based on pressure film technology[J]. Journal of Highway and Transportation Research and Development, 2020, 37(6): 22-28, 43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202006003.htm
    [45]
    张晓华, 张蓉, 周水文, 等. 铣刨工艺提高隧道内水泥混凝土路面抗滑性能应用探讨[J]. 中外公路, 2016, 36(2): 62-65. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201602014.htm

    ZHANG Xiao-hua, ZHANG Rong, ZHOU Shui-wen, et al. Discussion on application of milling technology to improve skid resistance of cement concrete pavement in tunnel[J]. Journal of China and Foreign Highway, 2016, 36(2): 62-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201602014.htm
    [46]
    展宏图, 刘亮. 陶瓷刀具仿形造纹技术在提高隧道水泥路面抗滑性能中的应用研究[J]. 中外公路, 2019, 39(4): 200-204. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201904040.htm

    ZHAN Hong-tu, LIU Liang. Study on the application of ceramic tool profiling technology in improving the skid resistance of tunnel cement pavement[J]. Journal of China and Foreign Highway, 2019, 39(4): 200-204. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201904040.htm
    [47]
    张艳聪, 周新星. 高速公路隧道水泥混凝土路面抗滑能力恢复技术的应用[J]. 公路, 2021, 66(2): 297-299. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202102059.htm

    ZHANG Yan-cong, ZHOU Xin-xing. Application of recovery technology for anti-sliding capability of cement concrete pavement of tunnel on expressway[J]. Highway, 2021, 66(2): 297-299. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL202102059.htm
    [48]
    郑少鹏, 彭鹏, 谢晋德, 等. 水泥混凝土路面抛丸机施工效果研究[J]. 中外公路, 2013, 33(6): 85-88. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201306020.htm

    ZHENG Shao-peng, PENG Peng, XIE Jin-de, et al. Study on the construction effect of cement concrete pavement shot blasting machine[J]. Journal of China and Foreign Highway, 2013, 33(6): 85-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201306020.htm
    [49]
    肖鹏飞, 韩森. 环境因素对水泥混凝土路面抗滑性能影响的试验研究[J]. 公路, 2012(7): 246-249. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201207053.htm

    XIAO Peng-fei, HAN Sen. Experimental study on influence of environmental factors on skid resistance of cement concrete pavement[J]. Highway, 2012(7): 246-249. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201207053.htm
    [50]
    SUN Ya-zhen, ZHENG Zhi, HUANG Wei-ming, et al. Analytical solution based on state-space method for cracked concrete pavement subjected to arbitrary concentrated loading[J]. Construction and Building Materials, 2022, 347: 128612.
    [51]
    孙雅珍, 郑直, 黄伟明, 等. 基于状态空间法的含裂缝水泥路面结构分析[J]. 吉林大学学报(工学版), 2023, 53(1): 188-196. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202301019.htm

    SUN Ya-zhen, ZHENG Zhi, HUANG Wei-ming, et al. Structural analysis of cement pavement with cracks based on state-space method[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(1): 188-196. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202301019.htm
    [52]
    BARI M E, ZOLLINGER D G. New concepts for the assessment of concrete slab interfacial effects in pavement design and analysis[J]. International Journal of Pavement Engineering, 2016, 17(3): 233-244.
    [53]
    郑直, 郭乃胜, 孙雅珍, 等. 考虑层间滑移的水泥混凝土路面结构力学响应分析[J]. 东南大学学报(自然科学版), 2023, 53(4): 655-663. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202304011.htm

    ZHENG Zhi, GUO Nai-sheng, SUN Ya-zhen, et al. Mechanical response analysis on cement concrete pavement structure considering interlayer slip[J]. Journal of Southeast University(Natural Science Edition), 2023, 53(4): 655-663. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX202304011.htm
    [54]
    段小兰. 混凝土路面脱空板角的温度应力有限元分析研究[D]. 重庆: 重庆交通大学, 2016.

    DUAN Xiao-lan. The thermal stress study of void beneath slab on cement concrete pavement[D]. Chongqing: Chongqing Jiaotong University, 2016. (in Chinese)
    [55]
    颜可珍, 沈光辉, 游凌云. 非线性温度梯度作用下水泥混凝土路面力学分析[J]. 湖南大学学报(自然科学版), 2015, 42(7): 74-80.

    YAN Ke-zhen, SHEN Guang-hui, YOU Ling-yun. Mechanical analysis of cement concrete pavement on nonlinear temperature profile[J]. Journal of Hunan University (Natural Sciences), 2015, 42(7): 74-80. (in Chinese)
    [56]
    DING Fei, YIN Yan, CAI Liang-cai, et al. Mechanical response of typical cement concrete pavements under impact loading[J]. Mathematical Problems in Engineering, 2017, 2017: 2050285.
    [57]
    CUI Can, LU Qing, GUO Cheng-chao, et al. Analysis of the coupling effect of thermal and traffic loads on cement concrete pavement with voids repaired with polymer grout[J]. Advances in Materials Science and Engineering, 2022, 2022: 2517250.
    [58]
    MAITRA S R, REDDY K S, RAMACHANDRA L S. Numerical investigation of fatigue characteristics of concrete pavement[J]. International Journal of Fracture, 2014, 189(2): 181-193.
    [59]
    MINER M A. Cumulative damage in fatigue[J]. Journal of Applied Mechanics, 1945, 12(3): A159-A164.
    [60]
    肖赟. 预应力混凝土梁超载疲劳刚度退化试验研究[D]. 北京: 北京交通大学, 2014.

    XIAO Yun. Experimental study on stiffness degradation of prestressed concrete beam under overload fatigue[D]. Beijing: Beijing Jiaotong University, 2014. (in Chinese)
    [61]
    赵少汴. 常用累积损伤理论疲劳寿命估算精度的试验研究[J]. 机械强度, 2000, 22(3): 206-209. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD200003013.htm

    ZHAO Shao-bian. Study on the accuracy of fatigue life predictions by the generally used damage accmulation theory[J]. Journal of Mechanical Strength, 2000, 22(3): 206-209. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD200003013.htm
    [62]
    MARCO S M, STARKEY W L. A concept of fatigue damage[J]. Journal of Fluids Engineering, 1954, 76(4): 627-632.
    [63]
    李威. 考虑强度退化的非线性累积损伤模型分析[J]. 机械强度, 2020, 42(3): 723-727. https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD202003031.htm

    LI Wei. Analysis of nonlinear cumulative damage model considering strength degradation[J]. Journal of Mechanical Strength, 2020, 42(3): 723-727. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXQD202003031.htm
    [64]
    王文阁, 卢延辉. 实用概率Miner理论及在汽车部件疲劳计算上的应用[J]. 汽车技术, 2009(12): 12-16. https://www.cnki.com.cn/Article/CJFDTOTAL-QCJS200912006.htm

    WANG Wen-ge, LU Yan-hui. Application of pragmatic probability miner fatigue damage theory in auto parts fatigue calculation[J]. Automobile Technology, 2009(12): 12-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QCJS200912006.htm
    [65]
    李荣, 邱洪兴, 淳庆. 疲劳累积损伤规律研究综述[J]. 金陵科技学院学报, 2005, 21(3): 17-21. https://www.cnki.com.cn/Article/CJFDTOTAL-NJNZ200503006.htm

    LI Rong, QIU Hong-xing, CHUN Qing. Research review of fatigue accumulative damage rule[J]. Journal of Jinling Institute of Technology, 2005, 21(3): 17-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NJNZ200503006.htm
    [66]
    郭寅川, 申爱琴, 田丰, 等. 动态疲劳荷载作用下路面混凝土力学性能研究[J]. 中国公路学报, 2017, 30(7): 18-24. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201707003.htm

    GUO Yin-chuan, SHEN Ai-qin, TIAN Feng, et al. Mechanical property of pavement cement concrete under dynamic fatigue load[J]. China Journal of Highway and Transport, 2017, 30(7): 18-24. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL201707003.htm
    [67]
    HOU Yue, LI Qiu-han, ZHANG Chen, et al. The state-of-the-art review on applications of intrusive sensing, image processing techniques, and machine learning methods in pavement monitoring and analysis[J]. Engineering, 2021, 7(6): 845-856.
    [68]
    BRAUNFELDS J, SENKANS U, SKELS P, et al. Road pavement structural health monitoring by embedded fiber-bragg-grating-based optical sensors[J]. Sensors, 2022, 22(12): 4581.
    [69]
    SOUNTHARARAJAH A, WONG L, NGUYEN N, et al. Evaluation of flexural behaviour of cemented pavement material beams using distributed fibre optic sensors[J]. Construction and Building Materials, 2017, 156: 965-975.
    [70]
    BLANC J, HORNYCH P, DUONG N S, et al. Monitoring of an experimental motorway section[J]. Road Materials and Pavement Design, 2019, 20(1): 74-89.
    [71]
    ALSHANDAH M, HUANG Ying, GAO Zhi-li, et al. Internal crack detection in concrete pavement using discrete strain sensors[J]. Journal of Civil Structural Health Monitoring, 2020, 10(2): 345-356.
    [72]
    CAI Shu-xiang, YUAN Hai-wen, CUI Yong, et al. An ISO/IEC/IEEE21451 smart sensor network for distributed measurement of pavement structural temperature[J]. International Journal of Distributed Sensor Networks, 2016, 12(3): 3408489.
    [73]
    GODOY J, HABER R, MUÑOZ J J, et al. Smart sensing of pavement temperature based on low-cost sensors and V2I communications[J]. Sensors, 2018, 18(7): 2092.
    [74]
    RASOL M A, PÉREZ-GRACIA V, SOLLA M, et al. An experimental and numerical approach to combine ground penetrating radar and computational modeling for the identification of early cracking in cement concrete pavements[J]. NDT and E International, 2020, 115: 102293.
    [75]
    STRYK J, MATULA R, POSPÍŠIL K, et al. Comparative measurements of ground penetrating radars used for road and bridge diagnostics in the Czech Republic and France[J]. Construction and Building Materials, 2017, 154: 1199-1206.
    [76]
    ZHAO Shan, AL-QADI I L, WANG Si-qi. Prediction of thin asphalt concrete overlay thickness and density using nonlinear optimization of GPR data[J]. NDT and E International, 2018, 100: 20-30.
    [77]
    YANG Guang-wei, WANG K C P, LI J Q, et al. A novel 0.1 mm 3D laser imaging technology for pavement safety measurement[J]. Sensors, 2022, 22(20): 8038.
    [78]
    GAO Ming-xing, WANG Xu, ZHU Shou-lin, et al. Detection and segmentation of cement concrete pavement pothole based on image processing technology[J]. Mathematical Problems in Engineering, 2020: 1360832.
    [79]
    PEDDINTI P R T, PUPPALA H, KIM B. Pavement monitoring using unmanned aerial vehicles: an overview[J]. Journal of Transportation Engineering, Part B: Pavements, 2023, 149(3): 03123002.
    [80]
    LEI Guang-yu, HAN Ji-chang, DANG Fa-ning. Using X-ray CT scanning to study the failure mechanism of concrete under static and dynamic loadings[J]. Advances in Materials Science and Engineering, 2018: 3019158.
    [81]
    WANG Ning, ZHANG Chao, MA Tao, et al. Damage evolution analysis in cementitious mixtures using acoustic emission techniques[J]. Journal of Transportation Engineering, Part B: Pavements, 2023, 149(3): 04023014.
    [82]
    ARUNDAS P H, DEWANGAN U K. Compressive strength of concrete based on ultrasonic and impact echo test[J]. Indian Journal of Science and Technology, 2016, 9(23): 1-7.
    [83]
    ARNDT R W. Square pulse thermography in frequency domain as adaptation of pulsed phase thermography for qualitative and quantitative applications in cultural heritage and civil engineering[J]. Infrared Physics and Technology, 2010, 53(4): 246-253.
    [84]
    LU Yang, GOLROKH A J, ISLAM M A. Concrete pavement service condition assessment using infrared thermography[J]. Advances in Materials Science and Engineering, 2017: 3829340.
    [85]
    GOLROKH A J, LU Yang. An experimental study of the effects of climate conditions on thermography and pavement assessment[J]. International Journal of Pavement Engineering, 2019, 22(8): 1030-1041.
    [86]
    LI Xiao-jun, WEN Hai-fang. Effects of preoverlay pavement conditions and preoverlay repair methods on the performance of asphaltic concrete overlays[J]. Journal of Transportation Engineering, 2014, 140(1): 42-49.
    [87]
    程培峰, 林宏. 基于Abaqus的旧水泥混凝土路面加铺沥青层结构的力学研究[J]. 公路工程, 2017, 42(1): 9-12, 30. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201701003.htm

    CHENG Pei-feng, LIN Hong. Based on Abaqus of paving asphalt layer structure of old cement concrete pavement mechanics[J]. Highway Engineering, 2017, 42(1): 9-12, 30. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201701003.htm
    [88]
    ZHONG Yang, LIU Heng. Theoretical analysis of overlay resisting crack propagation in old cement concrete pavement[J]. Road Materials and Pavement Design, 2014, 15(3): 701-711.
    [89]
    张丽娟, 陈晓生, 骆亚军. 旧水泥沥青加铺层路面结构温度场及热力分析[J]. 科学技术与工程, 2018, 18(12): 292-298. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201812048.htm

    ZHANG Li-juan, CHEN Xiao-sheng, LUO Ya-jun. The temperature field simulation and the thermomechanical analysis of asphalt overlay on the old portland cement pavement[J]. Science Technology and Engineering, 2018, 18(12): 292-298. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201812048.htm
    [90]
    李盛, 杨帆, 曹前, 等. 连续配筋混凝土路面结构优化及性能评价[J]. 土木工程学报, 2017, 50(7): 122-128. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201707013.htm

    LI Sheng, YANG Fan, CAO Qian, et al. Structure optimization and performance evaluation of continuously reinforced concrete pavement[J]. China Civil Engineering Journal, 2017, 50(7): 122-128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201707013.htm
    [91]
    朱琳, 党发宁, 丁卫华, 等. 基于CT技术和灰度共生矩阵理论研究不同荷载作用下混凝土的细观损伤演化过程[J]. 土木工程学报, 2020, 53(8): 97-107. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202008011.htm

    ZHU Lin, DANG Fa-ning, DING Wei-hua, et al. Coupled X-ray computed tomography and grey level co-occurrence matrices theory as a method for detecting microscopic damage of concrete under different loads[J]. China Civil Engineering Journal, 2020, 53(8): 97-107. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202008011.htm
    [92]
    李盛, 余时清, 张豪, 等. 连续配筋混凝土复合式沥青路面Top-Down裂缝疲劳扩展研究[J]. 中南大学学报(自然科学版), 2022, 53(11): 4473-4484. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202211026.htm

    LI Sheng, YU Shi-qing, ZHANG Hao, et al. Research on fatigue propagation of top-down cracks on continuously reinforced concrete composite asphalt pavement[J]. Journal of Central South University (Science and Technology), 2022, 53(11): 4473-4484. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD202211026.htm
    [93]
    潘勤学, 郑健龙. 考虑拉压模量不同的沥青路面力学计算方法与分析[J]. 土木工程学报, 2020, 53(1): 110-117. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202001012.htm

    PAN Qin-xue, ZHENG Jian-long. Mechanical calculation method and analysis of asphalt pavement considering different modulus in tension and compression[J]. China Civil Engineering Journal, 2020, 53(1): 110-117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202001012.htm
    [94]
    刘斌, 姚佳良, 沈丽. 沥青缓冲封层对水泥混凝土路面结构力学性能的影响[J]. 公路, 2016, 61(1): 13-17. https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201601006.htm

    LIU Bin, YAO Jia-liang, SHEN Li. Impact of asphalt buffer layer on the mechanical properties of cement concrete pavement[J]. Highway, 2016, 61(1): 13-17. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLGL201601006.htm
    [95]
    蔡燕霞, 臧芝树, 付欣. 设置层间功能层的刚性基层水泥混凝土路面动态响应灰关联分析[J]. 公路交通科技, 2012, 29(11): 35-39. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201211009.htm

    CAI Yan-xia, ZANG Zhi-shu, FU Xin. Grey incidence analysis of dynamic response of cement concrete pavement based on rigid base with function layer[J]. Journal of Highway and Transportation Research and Development, 2012, 29(11): 35-39. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK201211009.htm
    [96]
    CHEN Qi-qi, WANG Guan-hu, HUANG Xue-lin, et al. Evaluation and formulation of assessment criteria for dominant distresses in preventive maintenance of cement concrete pavements[J]. Mathematical Problems in Engineering, 2020: 8645213.
    [97]
    武贤慧, 沙爱民, 张娟. 水泥路面病害-成因关系链及数字化编码[J]. 长安大学学报(自然科学版), 2015, 35(2): 19-25. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201502005.htm

    WU Xian-hui, SHA Ai-min, ZHANG Juan. Chain and digital coding of distress and cause of cement concrete pavement[J]. Journal of Chang'an University(Natural Science Edition), 2015, 35(2): 19-25. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201502005.htm
    [98]
    KHEIRATI A, GOLROO A. Machine learning for developing a pavement condition index[J]. Automation in Construction, 2022, 139: 104296.
    [99]
    王丽娟, 胡昌斌. 设沥青夹层水泥混凝土路面早龄期力学行为与作用效应研究[J]. 工程力学, 2018, 35(2): 105-115. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201802014.htm

    WANG Li-juan, HU Chang-bin. Early-age mechanical behavior and action effect of cement concrete pavement with asphalt interlayers[J]. Engineering Mechanics, 2018, 35(2): 105-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201802014.htm
    [100]
    ITANI H, SAAD G, CHEHAB G. The use of geogrid reinforcement for enhancing the performance of concrete overlays: an experimental and numerical assessment[J]. Construction and Building Materials, 2016, 124: 826-837.
    [101]
    HU Li-wei, YAO Jia-liang, WANG Zhen-quan. Interlaminar mechanical properties of cement concrete pavement structures with isolation layer[J]. Journal of Performance of Constructed Facilities, 2021, 35(6): 04021093.
    [102]
    BISSONNETTE B, COURARD L, BEUSHAUSEN H, et al. Recommendations for the repair, the lining or the strengthening of concrete slabs or pavements with bonded cement-based material overlays[J]. Materials and Structures, 2013, 46(3): 481-494.
    [103]
    黄今, 陈拴发, 李祖仲. 旧水泥混凝土路面沥青加铺层反射裂缝的研究进展[J]. 材料导报, 2013, 27(3): 77-80. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201303017.htm

    HUANG Jin, CHEN Shuan-fa, LI Zu-zhong. Advances in reflection cracking of asphalt overlay on old concrete pavement[J]. Materials Reports, 2013, 27(3): 77-80. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201303017.htm
    [104]
    刘志胜, 刘志岗, 张翛, 等. 刚柔复合式路面裂缝反射预防技术研究进展[J]. 材料导报, 2016, 30(3): 86-90, 104. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201603017.htm

    LIU Zhi-sheng, LIU Zhi-gang, ZHANG Xiao, et al. Review of crack-reflection preventive technologies for rigid-flexible composite pavement[J]. Materials Reports, 2016, 30(3): 86-90, 104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB201603017.htm
    [105]
    XUE Y C, QIAN Z D, ZHANG M, et al. Reflective cracking resistance improvement of the asphalt concrete overlay on an airfield pavement[J]. Strength of Materials, 2020, 52(1): 149-159.
    [106]
    GE Zhe-sheng, WANG Hao, ZHANG Qing-shan, et al. Glass fiber reinforced asphalt membrane for interlayer bonding between asphalt overlay and concrete pavement[J]. Construction and Building Materials, 2015, 101: 918-925.
    [107]
    ZHAO Zi-feng, GUAN Xin, XIAO Fei-peng, et al. Applications of asphalt concrete overlay on Portland cement concrete pavement[J]. Construction and Building Materials, 2020, 264: 120045.
    [108]
    PEI Zhong-shi, YI Jun-yan, MAO Qing-yang, et al. DEM analysis of the evolution of reflection cracks in old cement concrete pavement with an ATB layer[J]. International Journal of Pavement Engineering, 2022, 24(2): 2049263.
    [109]
    BHATTACHARYA B B, GOTLIF A, DARTER M I, et al. Impact of joint spacing on bonded concrete overlay of existing asphalt pavement in the AASHTOW are pavement ME design software[J]. Journal of Transportation Engineering, Part B: Pavements, 2019, 145(3): 04019018.
    [110]
    CHEN Yu-an, CEYLAN H, NLENANYA I, et al. Long-term performance evaluation of Iowa concrete overlays[J]. International Journal of Pavement Engineering, 2020, 23(3): 719-730.
    [111]
    祝斯月, 秦先涛. 分离式水泥混凝土加铺层设计[J]. 中外公路, 2013, 33(4): 75-79. https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201304024.htm

    ZHU Si-yue, QIN Xian-tao. Separate cement concrete overlay design[J]. Journal of China and Foreign Highway, 2013, 33(4): 75-79. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GWGL201304024.htm
    [112]
    LI Sheng, YANG Fan, LIU Zhao-hui. A new structure for continuously reinforced concrete pavement with road performance evaluation[J]. Construction and Building Materials, 2017, 157: 1047-1052.
    [113]
    李盛, 杨帆, 刘萌, 等. 新型双层CRCP结构及在城市道路中的应用[J]. 中南大学学报(自然科学版), 2019, 50(4): 983-989. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201904028.htm

    LI Sheng, YANG Fan, LIU Meng, et al. Structure of continuously reinforced concrete pavement with double-layer reinforced and its application in urban road[J]. Journal of Central South University (Science and Technology), 2019, 50(4): 983-989. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201904028.htm
    [114]
    杨帆, 李琛琛, 李盛, 等. 温缩作用下双层连续配筋混凝土路面配筋率设计参数对比分析[J]. 吉林大学学报(工学版), 2023, 53(4): 1122-1132. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202304020.htm

    YANG Fan, LI Chen-chen, LI Sheng, et al. Numerical simulation of continuously reinforced concrete pavement with double-layer reinforcement under effect of temperature shrinkage[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(4): 1122-1132. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY202304020.htm
    [115]
    朱孝笑, 田莉梅. 某国道水泥混凝土路面病害分析及加铺方案比选研究[J]. 公路工程, 2019, 44(3): 138-142. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201903027.htm

    ZHU Xiao-xiao, TIAN Li-mei. Disease analysis and paving scheme for cement concrete pavement of a national highway comparison and selection research[J]. Highway Engineering, 2019, 44(3): 138-142. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGL201903027.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (369) PDF downloads(78) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return