Volume 24 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
YAN Ban-fu, LIU Qian, WANG Kai, TU Bing, KE Lu. Shear bearing capacity calculation method for UHPC beams with steel bottom plate[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 82-93. doi: 10.19818/j.cnki.1671-1637.2024.03.005
Citation: YAN Ban-fu, LIU Qian, WANG Kai, TU Bing, KE Lu. Shear bearing capacity calculation method for UHPC beams with steel bottom plate[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 82-93. doi: 10.19818/j.cnki.1671-1637.2024.03.005

Shear bearing capacity calculation method for UHPC beams with steel bottom plate

doi: 10.19818/j.cnki.1671-1637.2024.03.005
Funds:

National Natural Science Foundation of China U23A20662

National Natural Science Foundation of China 52208307

Scientific and Technological Plan Project of Guangxi Province AB23026154

More Information
  • Author Bio:

    YAN Ban-fu (1972-), male, professor, PhD, yanbanfu@gxu.edu.cn

  • Received Date: 2024-01-06
    Available Online: 2024-07-18
  • Publish Date: 2024-06-30
  • To investigate the shear performance and the calculation method for the shear bearing capacity of ultra-high performance concrete (UHPC) beams with steel bottom plates, seven test UHPC beams were designed and fabricated for shear-resistance testing by test research and theoretical analysis, with test parameters including joint configuration, longitudinal web reinforcement layout, and shear span ratio. Combined with limit equilibrium theory and sub-item linear superposition, a recommended formula for calculating the shear bearing capacity of UHPC beams with steel bottom plates was established. Shear contributions from stirrups, steel fibers, UHPC matrix, and steel plates were considered in this formula. It was subsequently compared with the calculation formula prescribed by the French code. Test results show that the failure mode of joint beams is characterized by shear failure with joint malposition, with primary cracks progressing diagonally along the joint side near the mid-span. In contrast, the failure mode of intact beams is related to the shear span ratio, shifting from shear-compression failure to flexural-shear failure as the shear span ratio increases. The presence of joints reduces the shear bearing capacity of UHPC beams with steel bottom plates, and it decreases with the increase of the shear span ratio. The layout of longitudinal web reinforcement can improve the shear bearing capacity and deformability of these beams effectively. The average ratio of the calculated value of shear bearing capacity via the proposed method to the test value is 0.91, with a coefficient of variation of 0.16. In comparison, the average ratio of the calculated value of shear bearing capacity via the French code method to the test value is 1.08, with a coefficient of variation of 0.29. Therefore, the proposed calculation method exhibits lower discreteness and is applicable for the shear bearing capacity calculation of UHPC beams with steel bottom plates.

     

  • loading
  • [1]
    YAN Pei-yu. Development and present situation of ultra high performance concrete (UHPC)[J]. China Concrete, 2010(9): 36-41. (in Chinese) doi: 10.3969/j.issn.1674-7011.2010.09.009
    [2]
    CHEN Bao-chun, JI Tao, HUANG Qing-wei, et al. Review of research on ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2014, 31(3): 1-24. (in Chinese) doi: 10.3969/j.issn.1673-2049.2014.03.002
    [3]
    LI Guo-ping, HU Hao, REN Cai, et al. Study on durability of joints in concrete bridge structures[J]. China Civil Engineering Journal, 2018, 51(7): 98-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201807011.htm
    [4]
    VOO Y L, POON W K, FOSTER S J. Shear strength of steel fiber-reinforced ultrahigh-performance concrete beams without stirrups[J]. Journal of Structural Engineering, 2010, 136(11): 1393-1400. doi: 10.1061/(ASCE)ST.1943-541X.0000234
    [5]
    VOO Y L, FOSTER S J, IAN G R. Shear strength of fiber reinforced reactive powder concrete prestressed girders without stirrups[J]. Journal of Advanced Concrete Technology, 2006, 4(1): 123-132. doi: 10.3151/jact.4.123
    [6]
    MESZOELY T, RANDL N. Shear behavior of fiber-reinforced ultra-high performance concrete beams[J]. Engineering Structures, 2018, 168: 119-127. doi: 10.1016/j.engstruct.2018.04.075
    [7]
    YANG K H, CHUNG H S, LEE E T, et al. Shear characteristics of high-strength concrete deep beams without shear reinforcements[J]. Engineering Structures, 2003, 25: 1343-1352. doi: 10.1016/S0141-0296(03)00110-X
    [8]
    DINH H H, PARRA-MONTESINOS G J, WIGHT J K. Shear strength model for steel fiber reinforced concrete beams without stirrup reinforcement[J]. Journal of Structural Engineering, 2011, 137(10): 1039-1051. doi: 10.1061/(ASCE)ST.1943-541X.0000362
    [9]
    KWAK Y K, EBERHARD M O, KIM W S, et al. Shear strength of steel fiber-reinforced concrete beams without stirrups[J]. ACI Structural Journal, 2002, 99(4): 530-538.
    [10]
    ZAGON R, MATTHYS S, KISS Z. Shear behaviour of SFR-UHPC I-shaped beams[J]. Construction and Building Materials, 2016, 124(15): 258-268.
    [11]
    WANG Qiang, SONG Hua-lin, LU Chun-ling, et al. Shear performance of reinforced ultra-high performance concrete rectangular section beams[J]. Structures, 2020, 27(8): 1184-1194.
    [12]
    QI Jia-nan, WANG Jing-quan, ZHOU Kai, et al. Experimental and theoretical investigations on shear strength of UHPC beams[J]. China Journal of Highway and Transport, 2020, 33(7): 95-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202007010.htm
    [13]
    ZHANG Hong-zhan, ZHANG Rui-jin, HUANG Cheng-kui. Sectional analysis of steel fiber reinforced concrete beams using modified compression field theory[J]. Engineering Mechanics, 2008, 25(3): 144-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200803028.htm
    [14]
    MA Kai-ze, MA Yu-dong, XING Guo-hua, et al. Study on shear behavior of reinforced ultra-high performance concrete beams[J]. Journal of Building Structures, 2022, 43(12): 179-188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZJB202212018.htm
    [15]
    MA Xi-lun, CHEN Bao-chun, YANG Yan, et al. Calculation method of shear bearing capacity of R-UHPC beam[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 16-26. (in Chinese) https://transport.chd.edu.cn/article/id/201705002
    [16]
    WU Peng-tao, WU Cheng-qing, LIU Zhong-xian, et al. Investigation of shear performance of UHPC by direct shear tests[J]. Engineering Structures, 2019, 183: 780-790. doi: 10.1016/j.engstruct.2019.01.055
    [17]
    JANG H, LEE H, CHO K, et al. Experimental study on shear performance of plain construction joints integrated with ultra-high performance concrete (UHPC)[J]. Construction and Building Materials, 2017, 152: 16-23. doi: 10.1016/j.conbuildmat.2017.06.156
    [18]
    PAN Ren-sheng, HE Wei-wei, CHENG Ling-xiao, et al. Direct shear strength of UHPC large-keyed epoxy joint: theoretical model and experimental verification[J]. Journal of Bridge Engineering, 2022, 27(9): 04022083. doi: 10.1061/(ASCE)BE.1943-5592.0001936
    [19]
    PAN Ren-sheng, CHENG Ling-xiao, HE Wei-wei, et al. Direct shear performance of UHPC multi-keyed epoxy joint[J]. Structures, 2022, 44(2): 1898-1909.
    [20]
    LIU Tong-xu, WANG Zhen, GUO Jian, et al. Shear strength of dry joints in precast UHPC segmental bridges: experimental and theoretical research[J]. Journal of Bridge Engineering, 2019, 24(1): 04018100. doi: 10.1061/(ASCE)BE.1943-5592.0001323
    [21]
    FENG Zheng, LI Chuan-xi, ZHOU Jia-le, et al. Direct shear test on UHPC key-wet-joints and the unified calculation formula of direct shear capacity of UHPC wet-joints[J]. China Civil Engineering Journal, 2022, 55(6): 79-91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC202206007.htm
    [22]
    AHMED A, FARGHALY A S, AHMED E A, et al. Laboratory testing of GFRP-RC panels with UHPFRC joints of the Nipigon River Cable-Stayed Bridge in Northwest Ontario, Canada[J]. Journal of Bridge Engineering, 2016, 21(11): 05016006.
    [23]
    JIA Yi-nan. On the mechanical behavior of the UHPC diamond wet joint beam with T-shaped strip[D]. Changsha: Hunan University, 2020. (in Chinese)
    [24]
    GAO Jian-ping, WU Zhang-yong, REN Le, et al. Experimental study on bending behavior of reinforced concrete beam strengthened with bolted side steel plate[J]. Earthquake Resistant Engineering and Retrofitting, 2012, 34(2): 13-16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKZ201202004.htm
    [25]
    WANG Zheng. Research on inclined section shear capacity of reinforced concrete beams[D]. Xi'an: Xi'an University of Architecture and Technology, 2012. (in Chinese)
    [26]
    XU Hai-bin, DENG Zong-cai. Shear bearing capacity of ultra-high performance concrete beams[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2015, 43(7): 24-28, 71. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HZLG201507005.htm
    [27]
    HASSAN A, MEHDI B, WILLIAM D C, et al. Response of steel fiber-reinforced concrete beams with and without stirrups[J]. ACI Structural Journal, 2012, 109(3): 359-367.
    [28]
    NAAMAN A E. Tensile strain-hardening FRC composites: historical evolution since the 1960[C]//CHRISTIAN U G. Advances in Construction Materials 2007. Berlin: Springer-Verlag, 2007: 181-202.
    [29]
    LI Hao-dao. Experimental research on shear behavior of ultra-high performance concrete structure with coarse aggregate[D]. Chengdu: Southwest Jiaotong University, 2018. (in Chinese)
    [30]
    GUO Zhen-hai, WANG Chuan-zhi. Investigation of strength and failure criterion of concrete under multi-axial stresses[J]. China Civil Engineering Journal, 1991, 24(3): 1-14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC199103000.htm
    [31]
    XIA Jun, XIAO Yu-lin, MACKIE K R, et al. Dowel action and shear strength contribution of high strength rebar embedded in ultra-high performance fiber reinforced concrete[J]. Engineering Structures, 2015, 83: 223-232.

Catalog

    Article Metrics

    Article views (411) PDF downloads(38) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return