Citation: | LIANG Min-cang, WANG Sheng-zheng. Long voyage planning and battery charging/swapping strategy of pure electric green ships[J]. Journal of Traffic and Transportation Engineering, 2024, 24(3): 266-278. doi: 10.19818/j.cnki.1671-1637.2024.03.019 |
[1] |
FABER J, HANAYAMA S, ZHANG S, et al. Fourth IMO greenhouse gas study 2020[R]. London: International Maritime Organization (IMO), 2021.
|
[2] |
BOWS-LARKIN A, ANDERSON K, MANDER S, et al. Shipping charts a high carbon course[J]. Nature Climate Change, 2015, 5(4): 293-295. doi: 10.1038/nclimate2532
|
[3] |
International Renewable Energy Agency. Navigating the way to a renewable future: solutions to decarbonise shipping[R]. Masdar City: International Renewable Energy Agency, 2019.
|
[4] |
赵巍. 水文与气象条件下的船舶多目标航路规划研究[D]. 长春: 吉林大学, 2021.
ZHAO Wei. Research on multi-object route planning of ships under hydrological and meteorological conditions[D]. Changchun: Jilin University, 2021. (in Chinese)
|
[5] |
YUAN Qiu-meng, WANG Sheng-zheng, ZHAO Jian-sen, et al. Uncertainty-informed ship voyage optimization approach for exploiting safety, energy saving and low carbon routes[J]. Ocean Engineering, 2022, 266: 112887. doi: 10.1016/j.oceaneng.2022.112887
|
[6] |
ZHANG Long-hui, PENG Xiu-yan, LIU Zheng-feng, et al. An application of augmented Lagrangian differential evolution algorithm for optimizing the speed of inland ships sailing on the Yangtze River[J]. International Journal of Naval Architecture and Ocean Engineering, 2022, 14: 100488. doi: 10.1016/j.ijnaoe.2022.100488
|
[7] |
MA Wei-hao, MA Dong-fang, MA Yi-jian, et al. Green maritime: a routing and speed multi-objective optimization strategy[J]. Journal of Cleaner Production, 2021, 305: 127179. doi: 10.1016/j.jclepro.2021.127179
|
[8] |
FAN Hou-ming, YU Jia-qi, LIU Xin-zhe. Tramp ship routing and scheduling with speed optimization considering carbon emissions[J]. Sustainability, 2019, 11: 6367. doi: 10.3390/su11226367
|
[9] |
ZHANG Yan, SUN Lin, FAN Tian-yuan, et al. Speed and energy optimization method for the inland all-electric ship in battery-swapping mode[J]. Ocean Engineering, 2023, 284: 115234. doi: 10.1016/j.oceaneng.2023.115234
|
[10] |
LI Xiao-he, SUN Bao-zhi, GUO Chun-yu, et al. Speed optimization of a container ship on a given route considering voluntary speed loss and emissions[J]. Applied Ocean Research, 2020, 94: 101995. doi: 10.1016/j.apor.2019.101995
|
[11] |
LI Xin, GU Yi-qing, FAN Xiang, et al. An optimization model for ship speed based on maneuvering control[J]. Journal of Marine Science and Engineering, 2023, 11: 49.
|
[12] |
李明峰, 王胜正, 谢宗轩. 恶劣气象海况下船舶航线的多变量多目标优化建模[J]. 中国航海, 2020, 43(2): 14-19, 30. doi: 10.3969/j.issn.1000-4653.2020.02.003
LI Ming-feng, WANG Sheng-zheng, XIE Zong-xuan. Multi-variable-multi-objective optimization of ship routes under rough weather condition[J]. Navigation of China, 2020, 43(2): 14-19, 30. (in Chinese) doi: 10.3969/j.issn.1000-4653.2020.02.003
|
[13] |
王孝元, 黄宇晴, 曹建萍. 基于粒子群算法的电池船运行优化[J]. 船舶工程, 2022, 44(2): 94-98, 133. https://www.cnki.com.cn/Article/CJFDTOTAL-CANB202202016.htm
WANG Xiao-yuan, HUANG Yu-qing, CAO Jian-ping. Optimal operation of battery ship based on particle swarm optimization[J]. Ship Engineering, 2022, 44(2): 94-98, 133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CANB202202016.htm
|
[14] |
张泽辉, 陈辉, 高海波, 等. 基于实时小波变换的燃料电池混合动力船舶能量管理策略[J]. 中国舰船研究, 2020, 15(2): 127-136. https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG202002019.htm
ZHANG Ze-hui, CHEN Hui, GAO Hai-bo, et al. Energy management strategies for fuel cell hybrid ships based on real-time wavelet transform[J]. Chinese Journal of Ship Research, 2020, 15(2): 127-136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCZG202002019.htm
|
[15] |
瞿小豪. 考虑多因素的燃料电池/锂电池混合动力船舶能效优化研究[D]. 武汉: 武汉理工大学, 2020.
QU Xiao-hao. Research on energy efficiency optimization of fuel cell/lithium battery hybrid ship by considering multiple ractors[D]. Wuhan: Wuhan University of Technology, 2020. (in Chinese)
|
[16] |
张扬. 网联环境下混合动力汽车的智能能量管理策略研究[D]. 重庆: 重庆理工大学, 2022.
ZHANG Yang. Research on intelligent energy management strategy of hybrid electric vehicle in networked environment[D]. Chongqing: Chongqing University of Technology, 2022. (in Chinese)
|
[17] |
吕少文. 基于智能交通的纯电动汽车速度优化控制方法研究[D]. 淄博: 山东理工大学, 2019.
LYU Shao-wen. Research on electric vehicle velocity optimal control method based on intelligent transportation[D]. Zibo: Shandong University of Technology, 2019. (in Chinese)
|
[18] |
李超. 基于巡航速度优化的混合动力车辆能量管理[D]. 长春: 吉林大学, 2016.
LI Chao. Hybrid electric vehicle energy management based on cruise speed optimization[D]. Changchun: Jilin University, 2016. (in Chinese)
|
[19] |
孙秉珍, 杨佳楠, 白军成, 等. 充电中断情景下电动汽车充电站两阶段多目标区间选址优化决策[J]. 控制与决策, 2022, 37(4): 1005-1014. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202204023.htm
SUN Bing-zhen, YANG Jia-nan, BAI Jun-cheng, et al. A two-stage multi-objective interval location optimization decision of electric vehicle charging station under charging interruption scenario[J]. Control and Decision, 2022, 37(4): 1005-1014. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC202204023.htm
|
[20] |
VERMA A. Electric vehicle routing problem with time windows, recharging stations and battery swapping stations[J]. Euro Journal on Transportation and Logistics, 2018, 7: 415-451. doi: 10.1007/s13676-018-0136-9
|
[21] |
翟小明, 尹勇, 神和龙, 等. 内河船舶模拟器中河流的绘制方法综述[J]. 中国航海, 2014, 37(3): 41-45, 126. doi: 10.3969/j.issn.1000-4653.2014.03.010
ZHAI Xiao-ming, YIN Yong, SHEN He-long, et al. Review on methods of rendering of rivers in inland river ship simulator[J]. Navigation of China, 2014, 37(3): 41-45, 126. (in Chinese) doi: 10.3969/j.issn.1000-4653.2014.03.010
|
[22] |
SENA D, PEREIRA J, COSTA V. Physics-based water interaction and shading: the SiViFlow algorithm[C]// WSCG. 21st International Conference on Computer Graphics, Visualization and Computer Vision 2013. Plzen: WSCG, 2013: 49-59.
|
[23] |
ZHAO Ke, ZHANG Di, JIN Jian-gang, et al. Vessel voyage schedule planning for maritime ore transportation[J]. Ocean Engineering, 2024, 291: 116503. doi: 10.1016/j.oceaneng.2023.116503
|
[24] |
GAO Jing-jie, LAN Hai, ZHANG Xi-nan, et al. A coordinated generation and voyage planning optimization scheme for all-electric ships under emission policy[J]. International Journal of Electrical Power and Energy Systems, 2024, 156: 109698. doi: 10.1016/j.ijepes.2023.109698
|
[25] |
WU G X, ATILLA I, TAHSIN T, et al. Long-voyage route planning method based on multi-scale visibility graph for autonomous ships[J]. Ocean Engineering, 2020, 219(4): 108242.
|
[26] |
DU Wei, LI Yan-jun, ZHANG Guo-lei, et al. Energy saving method for ship weather routing optimization[J]. Ocean Engineering, 2022, 258(2): 111771.
|
[27] |
GAN Lang-xiong, YAN Zhi-xue, ZHANG Lei, et al. Ship path planning based on safety potential field in inland rivers[J]. Ocean Engineering, 2022, 260(3): 111928.
|
[28] |
DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197. doi: 10.1109/4235.996017
|
[29] |
YU Q Z, NEYRET F, BRUNETON E, et al. Scalable real-time animation of rivers[J]. Computer Graphics Forum, 2009, 28(2): 239-248. doi: 10.1111/j.1467-8659.2009.01363.x
|
[30] |
CHENG R, JIN Y C, OLHOFER M, et al. A reference vector guided evolutionary algorithm for many-objective optimization[J]. IEEE Transactions on Evolutionary Computation, 2016, 20(5): 773-791. doi: 10.1109/TEVC.2016.2519378
|